Book contents
- Frontmatter
- Contents
- Preface to the first edition
- Preface to the second edition
- 1 Introduction
- 2 Outline of crystal field theory
- 3 Energy level diagrams and crystal field spectra of transition metal ions
- 4 Measurements of absorption spectra of minerals
- 5 Crystal field spectra of transition metal ions in minerals
- 6 Crystal chemistry of transition metal-bearing minerals
- 7 Thermodynamic properties influenced by crystal field energies
- 8 Trace element geochemistry: distribution of transition metals in the Earth's crust
- 9 Mantle geochemistry of the transition elements: optical spectra at elevated temperatures and pressures
- 10 Remote-sensing compositions of planetary surfaces: applications of reflectance spectra
- 11 Covalent bonding of the transition elements
- Appendices
- References
- Subject index
5 - Crystal field spectra of transition metal ions in minerals
Published online by Cambridge University Press: 23 November 2009
- Frontmatter
- Contents
- Preface to the first edition
- Preface to the second edition
- 1 Introduction
- 2 Outline of crystal field theory
- 3 Energy level diagrams and crystal field spectra of transition metal ions
- 4 Measurements of absorption spectra of minerals
- 5 Crystal field spectra of transition metal ions in minerals
- 6 Crystal chemistry of transition metal-bearing minerals
- 7 Thermodynamic properties influenced by crystal field energies
- 8 Trace element geochemistry: distribution of transition metals in the Earth's crust
- 9 Mantle geochemistry of the transition elements: optical spectra at elevated temperatures and pressures
- 10 Remote-sensing compositions of planetary surfaces: applications of reflectance spectra
- 11 Covalent bonding of the transition elements
- Appendices
- References
- Subject index
Summary
The end products of the analysis (measurement and interpretation of mineral absorption spectra by crystal field theory) are some parameters that can be correlated with structural properties.
K. L. Keester & W. B. White, Proc. 5th IMA Meeting (Cambridge, 1966), p. 22 (1968)Introduction
In the previous chapter it was shown how measurements of polarized absorption spectra in the visible to near-infrared region can provide information on such crystal chemical problems as oxidation states of transition metal ions, coordination site symmetries and distortions, cation ordering and the origins of colour and pleochroism of minerals. Much attention was focused in chapter 4 on energies of intervalence charge transfer transitions appearing in electronic absorption spectra of mixed-valence minerals.
Perhaps a more fundamental application of crystal field spectral measurements, and the one that heralded the re-discovery of crystal field theory by Orgel in 1952, is the evaluation of thermodynamic data for transition metal ions in minerals. Energy separations between the 3d orbital energy levels may be deduced from the positions of crystal field bands in an optical spectrum, making it potentially possible to estimate relative crystal field stabilization energies (CFSE's) of the cations in each coordination site of a mineral structure. These data, once obtained, form the basis for discussions of thermodynamic properties of minerals and interpretations of transition metal geochemistry described in later chapters.
- Type
- Chapter
- Information
- Mineralogical Applications of Crystal Field Theory , pp. 146 - 239Publisher: Cambridge University PressPrint publication year: 1993