Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T12:53:31.001Z Has data issue: false hasContentIssue false

2 - Compact Modeling of High-Power FETs

Published online by Cambridge University Press:  19 August 2009

Peter Aaen
Affiliation:
Freescale Semiconductor, AZ
Jaime A. Plá
Affiliation:
Freescale Semiconductor, AZ
John Wood
Affiliation:
Maxim Integrated Products
Get access

Summary

Introduction

In this chapter we set the stage for the detailed discussion of the model analysis, extraction and construction choices that are described in subsequent chapters. So far, we have presented a background outlining how field effect transistors (FETs) have been developed for and used in RF and microwave power amplifiers. This has covered a high level introduction to how the FET-based transistors are structured and fabricated, in both silicon LDMOS and III–V semiconductor technologies, and an outline of how these field-effect transistors operate electrically. With this background in place, we can now discuss in greater detail some of the modeling issues that need to be considered carefully in order to construct an accurate transistor model that can be used in the design of RF power amplifiers.

Our aim is to build models for the transistors that can be used in circuit simulators for the design of power amplifiers and power amplifier integrated circuits. These models are known as compact models. To achieve this objective, the models must be able to reproduce with acceptable fidelity the measured electrical and thermal properties of the transistors, and to simulate them quickly, with robust convergence.

Another common modeling objective is to be able to inform the physical device design: in other words indicate which of the material and structural properties of a given transistor affect its electrical performance. The accuracy with which any model can achieve this depends on the level of abstraction of the model in the first place.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×