Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T22:49:00.625Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  31 August 2018

Paul Garrett
Affiliation:
University of Minnesota
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[Arthur 1978] J., Arthur, A trace formula for reductive groups, I. Terms associated to classes in G(Q), Duke. Math. J. 45 (1978), 911–952.Google Scholar
[Arthur 1980] J., Arthur, A trace formula for reductive groups, II. Application of a truncation operator, Comp. Math. J. 40 (1980), 87–121.Google Scholar
[Avakumović 1956] V. G., Avakumović, Über die Eigenfunktionen auf geschlossenen Riemannschen Mannigfaltigkeiten, Math. Z. 65 (1956), 327–344.Google Scholar
[Bargmann 1947] V., Bargmann, Irreducible unitary representations of the Lorentz group, Ann. Math. 48 (1947), 568–640.Google Scholar
[Berezin 1956] F. A., Berezin, Laplace operators on semisimple Lie groups, Dokl.Akad. Nauk SSSR 107 (1956), 9–12.Google Scholar
[Berezin-Faddeev 1961] F. A., Berezin, L. D., Faddeev, Remarks on Schrödinger's equation with a singular potential, Soviet Math. Dokl. 2 (1961), 372–375.Google Scholar
[Bethe-Peierls 1935] H., Bethe, R., Peierls, Quantum theory of the diplon, Proc. Royal Soc. London 148a (1935), 146–156.Google Scholar
[Bianchi 1892] L., Bianchi, Sui gruppi di sostituzioni lineari con coefficienti appartenenti a corpi quadratici immaginari, Math. Ann. 40 (1892), 332–412.Google Scholar
[Birkhoff 1908] G. D., Birkhoff, On the asymptotic character of the solutions of certain linear differential equations containing a parameter, Trans. Amer.Math. Soc. 9 (1908), 219–231.Google Scholar
[Birkhoff 1909] G. D., Birkhoff, Singular points of ordinary linear differential equations, Trans. Amer. Math. Soc. 10 (1909), 436–470.Google Scholar
[Birkhoff 1913] G. D., Birkhoff, On a simple type of irregular singular point, Trans. Amer. Math. Soc. 14 (1913), 462–476.Google Scholar
[Birkhoff 1935] G., Birkhoff, Integration of functions with values in a Banach space, Trans. AMS 38 (1935), 357–378.Google Scholar
[Blaustein-Handelsman 1975] N., Blaustein, R. A., Handelsman, Asymptotic Expansions of Integrals, Holt, Rinehart, Winston, 1975, reprinted 1986, Dover.Google Scholar
[Blumenthal 1903/1904] O., Blumenthal, Über Modulfunktionen von mehreren Veränderlichen, Math. Ann. Bd. 56 (1903), 509–548; 58 (1904), 497–527.Google Scholar
[Bocher 1898/1899] M., Bocher, The theorems of oscillation of Sturm and Klein, Bull. AMS 4 (1898), 295–313; 5 (1899), 22–43.Google Scholar
[Bochner 1932] S., Bochner, Vorlesungen über Fouriersche Integrale, Akademie-Verlag, 1932.
[Bochner 1935] S., Bochner, Integration von Funktionen deren Werte die Elemente eines Vektorraumes sind, Fund. Math. 20 (1935), 262–276.Google Scholar
[Bochner-Martin 1948] S., Bochner,W. T. Martin, Several Complex Variables, Princeton University Press, Princeton, 1948.Google Scholar
[Borel 1962] A., Borel, Ensembles fondamentaux pour les groupes arithmétiques, Colloque sur la theorie des groupes algebriques, Bruxelles, 1962, 23–40.Google Scholar
[Borel 1963] A., Borel, Some finiteness properties of adele groups over number fields, IHES Sci. Publ. Math. 16 (1963), 5–30.Google Scholar
[Borel 1965/1966a] A., Borel, Introduction to automorphic forms, in Algebraic Groups and Discontinuous Subgroups, Boulder, 1965, Proc. Symp. PureMath. 9, AMS, New York, 1966, 199–210.
[Borel 1965/1966b] A., Borel, Reduction theory for arithmetic groups, in Algebraic Groups and Discontinuous Subgroups, Boulder, 1965, Proc. Symp. Pure Math. 9, AMS, New York 1966, 20–25.
[Borel 1969] A., Borel, Introductions aux groupes arithmeétiques, Publ. l'Inst. Math. Univ. Strasbourg, XV, Actualites Sci. et Industrielles, no. 1341, Hermann, Paris, 1969.Google Scholar
[Borel 1976] A., Borel, Admissible representations of a semi-simple group over a local field with vectors fixed under an Iwahori subgroup, Inv. Math. 35 (1976), 233–259.Google Scholar
[Borel 1997] A., Borel, Automorphic Forms on SL2(R), Cambridge Tracts in Math. 130, Cambridge University Press, Cambridge, 1997.Google Scholar
[Borel 2007] A., Borel, Automorphic forms on reductive groups, in Automorphic Forms and Applications, eds. P., Sarnak and F., Shahidi, IAS/ParkCity Math Series 12, AMS, 2007.Google Scholar
[Borel-HarishChandra 1962] A., Borel, Harish-Chandra, Arithmetic subgroups of algebraic groups, Ann. Math. 75 (1962), 485–535.Google Scholar
[Bourbaki 1987] N., Bourbaki, Topological Vector Spaces, ch. 1–5, Springer-Verlag, Berlin-Heidelberg 1987.Google Scholar
[Braun 1939] H., Braun, Konvergenz verallgemeinerter Eisensteinscher Reihen, Math. Z. 44 (1939), 387–397.Google Scholar
[Brooks 1969] J. K., Brooks, Representations of weak and strong integrals in Banach spaces, Proc. Nat. Acad. Sci. U. S. A., 1969, 266–270.Google Scholar
[Casselman 1978/1980] W., Casselman, Jacquet modules for real reductive groups, Proc. Int. Cong. Math. (1978), 557–563, Acad. Sci. Fennica, Helskinki, 1980.Google Scholar
[Casselman 1980] W., Casselman, The unramified principal series of p-adic groups. I. The spherical function, Comp. Math. 40 (1980), no. 3, 387–406.Google Scholar
[Casselman 2005] W., Casselman, A conjecture about the analytical behavior of Eisenstein series, Pure and Applied Math. Q. 1 (2005) no. 4, part 3, 867–888.Google Scholar
[Casselman-Miličić 1982] W., Casselman, D., Miličić, Asymptotic behavior of matrix coefficients of admissible representations, Duke J. Math. 49 (1982), 869–930.Google Scholar
[Casselman-Osborne 1975] W., Casselman, M. S., Osborne, The n-cohomology of representations with an infinitesimal character, Comp. Math 31 (1975), 219–227.Google Scholar
[Casselman-Osborne 1978] W., Casselman, M. S., Osborne, The restriction of admissible representations to n, Math. Ann. 233 (1978), 193–198.Google Scholar
[Cogdell–Li-PiatetskiShapiro-Sarnak 1991] J., Cogdell, J.-S., Li, I. I., Piatetski-Shapiro, P., Sarnak, Poincaré series for SO(n, 1), Acta Math. 167 (1991), 229–285.
[Cogdell-PiatetskiShapiro 1990] J., Cogdell, I. Piatetski-Shapiro, The Arithmetic and Spectral Analysis of Poincaré Series, Perspectives in Mathematics, Academic Press, San Diego, 1990.Google Scholar
[Cohen-Sarnak 1980] P., Cohen, P., Sarnak, Selberg Trace Formula, ch. 6 and 7, Eisenstein series for hyperbolic manifolds, www.math.princeton.edu/sarnak/
[Colin de Verdiere 1981] Y., Colin de Verdiere, Une nouvelle démonstration du prolongement méromorphe des séries d'Eisenstein, C. R. Acad. Sci. Paris Ser. I Math. 293 (1981), no. 7, 361–363.Google Scholar
[Colin de Verdiere 1982/1983] Y., Colin de Verdiere, Pseudo-laplaciens, I, II, Ann. Inst. Fourier (Grenoble) 32 (1982) no. 3, xiii, 275–286; ibid, 33 (1983) no. 2, 87–113.Google Scholar
[Conway-Smith 2003] J., Conway, D., Smith, On Quaternions and Octonians, A. K. Peters, Natick, MA, 2003.Google Scholar
[DeCelles 2012] A., DeCelles, An exact formula relating lattice points in symmetric spaces to the automorphic spectrum, Illinois J. Math. 56 (2012), 805–823.Google Scholar
[DeCelles 2016] A., DeCelles, Constructing Poincaré series for number-theoretic applications, New York J. Math. 22 (2016) 1221–1247.Google Scholar
[Dirac 1928a/1928b] P. A.M., Dirac, The quantum theory of the electron, Proc. R. Soc. Lond. A 117 (1928), 610–624; II, ibid, 118 (1928), 351–361.Google Scholar
[Dirac 1930] P. A.M., Dirac, Principles of Quantum Mechanics, Clarendon Press, Oxford, 1930.Google Scholar
[Dirichlet 1829] P. G.L., Dirichlet, Sur la convergence des séries trigonométriques qui servent à représenter une fonction arbitraire entre des limites données, J. Reine Angew. Math 4 (1829), 157–169 (Werke I, 117–132).Google Scholar
[Douady 1963] A., Douady, Parties compactes d'un espace de fonctions continues a support compact, C. R. Acad. Sci. Paris 257 (1963), 2788–2791.Google Scholar
[Elstrodt 1973] J., Elstrodt, Die Resolvente zum Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene, I, Math. Ann. 203 (1973), 295–330, II, Math. Z. 132 (1973), 99–134.Google Scholar
[Elstrodt-Grunewald-Mennicke 1985] J., Elstrodt, E., Grunewald, J., Mennicke, Eisenstein series on three-dimensional hyperbolic spaces and imaginary quadratic fields, J. reine und angew. Math. 360 (1985), 160–213.Google Scholar
[Elstrodt-Grunewald-Mennicke 1987] J., Elstrodt, E., Grunewald, J., Mennicke, Zeta functions of binary Hermitian forms and special values of Eisenstein series on three-dimensional hyperbolic space, Math. Ann. 277 (1987), 655–708.Google Scholar
[Epstein 1903/1907] P., Epstein, Zur Theorie allgemeiner Zetafunktionen, Math. Ann. 56 (1903), 615–644; ibid, 65 (1907), 205–216.Google Scholar
[Erdelyi 1956] A., Erdelyi, Asymptotic Expansions, Technical Report 3, Office of Naval Research Reference No. NR-043-121, reprinted by Dover, 1956.
[Estermann 1928] T., Estermann, On certain functions represented by Dirichlet series, Proc. London Math. Soc. 27 (1928), 435–448.Google Scholar
[Faddeev 1967] L., Faddeev, Expansion in eigenfunctions of the Laplace operator on the fundamental domain of a discrete group on the Lobacevskii plane, AMS Transl. Trudy (1967), 357–386.Google Scholar
[Faddeev-Pavlov 1972] L., Faddeev, B. S., Pavlov, Scattering theory and automorphic functions, Seminar Steklov Math. Inst. 27 (1972), 161–193.Google Scholar
[Fay 1977] J. D., Fay, Fourier coefficients of the resolvent for a Fuchsian group, J. fur reine und angewandte Math. (Crelle) 293–294 (1977), 143–203.
[Fourier 1822] J., Fourier, Théorie analytique de la chaleur, Firmin Didot Pere et Fils, Paris, 1822.Google Scholar
[Friedrichs 1934/1935] K. O., Friedrichs, Spektraltheorie halbbeschränkter Operatoren,Math. Ann. 109 (1934), 465–487, 685–713; II, Math. Ann. 110 (1935), 777–779.Google Scholar
[Garding 1947] L., Garding, Note on continuous representations of Lie groups, Proc. Nat. Acad. Sci. USA 33 (1947), 331–332.Google Scholar
[Garrett vignettes] P., Garrett, Vignettes, www.math.umn.edu/∼garrett/m/v/
[Garrett mfms-notes] P., Garrett, Modular forms notes, www.math.umn.edu/∼garrett/m/mfms/
[Garrett fun-notes] P., Garrett, Functional analysis notes, www.math.umn.edu/∼garrett/m/fun/
[Garrett alg-noth-notes] P., Garrett, Algebraic number theory notes, www.math.umn.edu/∼garrett/ m/number_theory/
[Gelfand 1936] I. M., Gelfand, Sur un lemme de la theorie des espaces lineaires, Comm. Inst. Sci. Math. de Kharkoff, no. 4, 13 (1936), 35–40.Google Scholar
[Gelfand 1950] I. M., Gelfand, Spherical functions in Riemannian symmetric spaces, Dokl. Akad. Nauk. SSSR 70 (1950), 5–8.Google Scholar
[Gelfand-Fomin 1952] I. M., Gelfand, S. V., Fomin, Geodesic flows on manifolds of constant negative curvature, Uspekh. Mat. Nauk. 7 (1952), no. 1, 118–137. English translation, AMS ser. 2, 1 (1965), 49–65.Google Scholar
[Gelfand-Graev 1959] I. M., Gelfand, M. I., Graev, Geometry of homogeneous spaces, representations of groups in homogeneous spaces, and related problems of integral geometry, Trudy Moskov. Obshch. 8 (1962), 321–390.Google Scholar
[Gelfand-Graev-PiatetskiShapiro 1969] I., Gelfand, M., Graev, I. Piatetski-Shapiro, Representation Theory and Automorphic Functions, W. B. Saunders Co., Philadelphia, 1969.Google Scholar
[Gelfand-Kazhdan 1975] I. M., Gelfand, D., Kazhdan, Representations of the group GL(n, k) where k is a local field, in Lie Groups and Their Representations, Halsted, New York, 1975, pp. 95–118.Google Scholar
[Gelfand-PiatetskiShapiro 1963] I. M., Gelfand, I. I., Piatetski-Shapiro, Automorphic functions and representation theory, Trudy Moskov. Obshch. 8 (1963), 389–412. [Trans.: Trans. Moscow Math. Soc. 12 (1963), 438–464.]Google Scholar
[Gelfand-Shilov 1964] I. M., Gelfand, G. E., Shilov, Generalized Functions, I: Properties and Operators, Academic Press, New York, 1964.Google Scholar
[Gelfand-Vilenkin 1964] I. M., Gelfand, N. Ya., Vilenkin, Generalized Functions, IV: Applications of Harmonic Analysis, Academic Press, NY, 1964.Google Scholar
[Godement 1962–1964] R., Godement, Domaines fondamentaux des groupes arithmetiques, Sem. Bourb. 257 (1962–3).
[Godement 1966a] R., Godement, Decomposition of L2(\G) for = SL(2, Z), in Proc. Symp. Pure Math. 9 (1966), 211–224.
[Godement 1966b] R., Godement, The spectral decomposition of cuspforms, in Proc. Symp. Pure Math. 9 (1966), AMS 225–234.Google Scholar
[Green 1828] G., Green, An essay on the application of mathematical analysis to the theories of electricity and magnetism, arXiv:0807.0088 [physics.hist-ph]. Re-typeset 2008 from Crelle's J. reprint 1850–1854.
[Green 1837] G., Green, On the Laws of Reexion and Refraction of Light at the Common Surface of Two Non-crystallized Media Trans. Camb. Phil. Soc. 68 (1837), 457–462.Google Scholar
[Grothendieck 1950] A., Grothendieck, Sur la complétion du dual d'un espace vectoriel localement convexe, C. R. Acad. Sci. Paris 230 (1950), 605–606.Google Scholar
[Grothendieck 1953a,1953b] A., Grothendieck, Sur certaines espaces de fonctions holomorphes, I, J. Reine Angew. Math. 192 (1953), 35–64; II, 192 (1953), 77–95.Google Scholar
[Haas 1977] H., Haas, Numerische Berechnung der Eigenwerte der Differentialgleichung y2_u + ƛu = 0 für ein unendliches Gebiet im R2, Diplomarbeit, Universitat Heidelberg (1977), 155 pp.
[Harish-Chandra 1954] Harish-Chandra, Representations of semisimple Lie groups, III, Trans. AMS 76 (1954), 234–253.
[Harish-Chandra 1959] Harish-Chandra, Automorphic forms on a semi-simple Lie group, Proc. Nat. Acad. Sci. 45 (1959), 570–573.
[Harish-Chandra 1968] Harish-Chandra, Automorphic forms on semi-simple Lie groups, notes G. J. M. Mars., SLN 62, Springer-Verlag, 1968.
[Hartogs 1906] F., Hartogs, Zur Theorie der analytischen Funktionene mehrerer unabhängiger Veränderlichen, insbesondere über die Darstellung derselben durch Reihen, welche nach Potenzen einer Veränderlichen fortschreiten, Math. Ann. 62 (1906), 1–88.Google Scholar
[Hejhal 1976/1983] D., Hejhal, The Selberg trace formula for PSL2(R), I, SLN 548, Springer- Verlag, 1976; II, ibid, 1001, Springer-Verlag, 1983.
[Hejhal 1981] D., Hejhal, Some observations concerning eigenvalues of the Laplacian and Dirichlet L-series, in Recent Progress in Analytic Number Theory, ed. H., Halberstam and C., Hooley, vol. 2, Academic Press, New York, 1981, pp. 95–110.Google Scholar
[Hilbert 1909] D., Hilbert,Wesen und Ziele einer Analysis der unendlich vielen unabhängigen Variablen, Rendiconti Circolo Mat. Palermo 27 (1909), 59–74.Google Scholar
[Hilbert 1912] D., Hilbert, Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen, Teubner, Leipzig-Berlin, 1912.Google Scholar
[Hildebrandt 1953] T. H., Hildebrandt, Integration in abstract spaces, Bull. AMS, 59 (1953), 111– 139.Google Scholar
[Hille-Phillips 1957] E., Hille with R., Phillips, Functional Analysis and Semigroups, AMS Coll. Pub., 2nd edition, Providence, RI, 1957.Google Scholar
[Hormander 1973] L., Hormander, An Introduction to Complex Analysis in Several Variables, 2nd edition, North-Holland, 1973.Google Scholar
[Horvath 1966] J., Horvath, Topological Vector Spaces and Distributions, Addison-Wesley, Boston, 1966.Google Scholar
[Huber 1955] H., Huber, Über eine neue Klasse automorpher Funktionen und ein Gitterpunkt Problem in der hypbolischen Ebene I, Comm. Math. Helv. 30 (1955), 20–62.Google Scholar
[Hurwitz 1898] A., Hurwitz, Über die Komposition der quadratische Formen von beliebig vielen Variabeln, Nachr. Konig. Gesellschaft der Wiss. zu Gottingen (1898), 309–316.
[Hurwitz 1919] A., Hurwitz, Vorlesungen úber die Zahlentheorie der Quaternionen, Springer, Berlin, 1919.Google Scholar
[Iwaniec 2002] H., Iwaniec, Spectral Methods of Automorphic Forms, 2nd edition, AMS, Providence, 2002. [First edition, Revisto Mathematica Iberoamericana, 1995.]Google Scholar
[Jacquet 1982/1983] H., Jacquet, On the residual spectrum of GL(n), in Lie group representations, II, College Park, MD, 185–208, SLN 1041, Springer, Berlin, 1984.Google Scholar
[Kodaira 1949] K., Kodaira, The eigenvalue problem for ordinary differential equations of the second order and Heisenberg's theory of S-matrices, Amer. J. Math. 71 (1949), 921–945.Google Scholar
[Krein 1945] M. G., Krein, On self-adjoint extension of bounded and semi-boundedHermitian transformations, Dokl. Akad. Nauk. SSSR 48 (1945), 303–306 [Russian].Google Scholar
[Krein 1947] M. G., Krein, The theory of self-adjoint extension of semi-bounded Hermitian transformations and its applications, I. Mat. Sbornik 20 (1947), 431–495 [Russian].Google Scholar
[Kurokawa 1985a,b] N., Kurokawa, On the meromorphy of Euler products, I, Proc. London Math. Soc. 53 (1985) 1–49; II, ibid 53 (1985) 209–236.Google Scholar
[Lang 1975] S., Lang, SL2(R), Addison-Wesley, Boston, 1975.Google Scholar
[Langlands 1971] R., Langlands, Euler Products, Yale University Press, New Haven, 1971.Google Scholar
[Langlands 1967/1976] R. P., Langlands, On the functional equations satisfied by Eisenstein series. Lecture Notes in Mathematics, vol. 544, Springer-Verlag, Berlin and New York, 1976.Google Scholar
[Laplace 1774] P. S., Laplace, Mémoir on the probability of causes of events, Memoires de Mathematique et de Physique, Tome Sixieme. (English trans. S. M. Stigler, 1986. Statist. Sci., 1 19, 364–378).
[Lax-Phillips 1976] P., Lax, R., Phillips, Scattering theory for automorphic functions, Ann. Math. Studies, Princeton, 1976.Google Scholar
[Levi 1906] B., Levi, Sul Principio di Dirichlet, Rend. del Circolo Mat. di Palermo 22 (1906), 293–300.Google Scholar
[Lindelof 1908] E., Lindelof, Quelques remarques sur la croissance de la fonction ζ (s), Bull. Sci. Math. 32 (1908), 341–356.
[Liouville 1837] J., Liouville, J. Math. Pures et Appl. 2 (1837), 16–35.
[Lutzen 1984] J., Lutzen, Sturm and Liouville's work on ordinary differential equations. The emergence of Sturm-Liouville theory, Arch. Hist. Exact Sci 29 (1984) no. 4, 309–376. Retrieved July 16, 2013, from www.math.ku.dk/∼lutzen/Google Scholar
[Maas 1949] H., Maas, Über eine neue Art von nicht analytischen automorphen Funktionen und die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen, Math. Ann. 121 (1949), 141–183.Google Scholar
[MSE 2017] Math Stack, Exchange, Residual spectrum of a Hermitian operator, retrieved July 19, 2017, from https://math.stackexchange.com/questions/2363904/
[Matsumoto 1977] H., Matsumoto, Analyse harmonique dans les systèmes de Tits bornologiques de type affine, SLN 590, Springer, Berlin, 1977.Google Scholar
[Minakshisundaram-Pleijel 1949] S., Minakshisundaram, A., Pleijel, Some properties of the eigenfunctions of the Laplace-operator on Riemannian manifolds, Canadian J. Math. 1 (1949), 242– 256.Google Scholar
[Moeglin-Waldspurger 1989] C., Moeglin, J.-L., Waldspurger, Le spectre résiduel de GLn, with appendix Poles des fonctions L de pairs pour GLn, Ann. Sci. Ecole Norm. Sup. 22 (1989), 605– 674.Google Scholar
[Moeglin-Waldspurger 1995] C., Moeglin, J.-L., Waldspurger, Spectral Decompositions and Eisenstein series, Cambridge University Press, Cambridge, 1995.Google Scholar
[Muller 1996] W., Muller, On the analytic continuation of rank one Eisenstein series, Geom. Fun. Ann. 6 (1996), 572–586.Google Scholar
[Myller-Lebedev 1907] Wera, Myller-Lebedev, Die Theorie der Integralgleichungen in Anwendung auf einige Reihenentwicklungen, Math. Ann. 64 (1907), 388–416.Google Scholar
[Neunhoffer 1973] H., Neunhoffer, Über die analytische Fortsetzung von Poincaréreihen, Sitzungsberichte Heidelberg Akad. Wiss. (1973), no. 2.
[Niebur 1973] D., Niebur, A class of nonanalytic automorphic functions, NagoyaMath. J. 52 (1973), 133–145.
[Olver 1954] F. W. J., Olver, The asymptotic solution of linear differential equations of the second order for large values of a parameter, Phil. Trans. 247 (1954), 307–327.Google Scholar
[Paley-Wiener 1934] R., Paley, N., Wiener, Fourier transforms in the complex domain, AMS Coll. Publ. XIX, New York, 1934.Google Scholar
[Pettis 1938] B. J., Pettis, On integration in vector spaces, Trans. AMS 44 (1938), 277–304.Google Scholar
[Phragmen-Lindelof 1908] L. E., Phragmen, E., Lindelof, Sur une extension d'un principe classique de l'analyse et sur quelques propriétés des fonctions monogènes dans le voisinage d'un point singuliere, Acta Math. 31 (1908), 381–406.Google Scholar
[Piatetski-Shapiro 1979] I. I., Piatetski-Shapiro, Multiplicity-one theorems, in Automorphic Forms, Representations, and L-functions, Proc. Symp. PureMath. XXXIII, part 1, 315–322, AMS, 1979.
[Picard 1882] E., Picard, Sur une classe de groupes discontinus de substitutions linéaires et sur les fonctions de deux variables indépendantes restant invariables par ces substitutions, Acta Math. 1 no. 1 (1882), 297–320.
[Picard 1883] E., Picard, Sur des fonctions de deux variables indépendantes analogues aux fonctions modulaires Acta Math. no. 1 2 (1883), 114–135.
[Picard 1884] E., Picard, Sur un groupe de transformations des points de l'espace situés du même coˆté d'un plan, Bull. Soc. Math. France 12 (1884), 43–47.Google Scholar
[Povzner 1953] A., Povzner, On the expansion of arbitrary functions in characteristic functions of the operator −_u + cu, Math. Sb. 32 no. 74 (1953), 109–156.
[Rankin 1939] R., Rankin, Contributions to the theory of Ramanujan's function τ (n) and similar arithmetic functions, I, Proc. Cam. Phil. Soc. 35 (1939), 351–372.Google Scholar
[Riesz 1907] F., Riesz, Sur les systèmes orthogonaux de fonctions, C. R. de l'Acad. des Sci. 143 (1907), 615–619.Google Scholar
[Riesz 1910] F., Riesz, Untersuchungen über Systeme integrierbarer Funktionen, Math. Ann. 69 (1910), 449–497.Google Scholar
[Roelcke 1956a] W., Roelcke, Über die Wellengleichung bei Grenzkreisgruppen erster Art, S.-B. Heidelberger Akad. Wiss. Math. Nat. Kl. 1953/1955 (1956), 159–267.
[Roelcke 1956b] W., Roelcke, Analytische Fortsetzung der Eisensteinreihen zu den parabolischen Spitzen von Grenzkreisgruppen erster Art, Math. Ann. 132 (1956), 121–129.Google Scholar
[Rudin 1991] W., Rudin, Functional Analysis, second edition, McGraw-Hill, New York, 1991.Google Scholar
[Schaefer-Wolff 1999] H. H., Schaefer, with M. P., Wolff, Topological Vector Spaces, 2nd edition, Springer, Tubingen, 1999.Google Scholar
[Schmidt 1907] E., Schmidt, Zur Theorie der linearen und nichtlinearen Integralgleichungen. Teil I: Entwicklung wilkürlicher Funktionen nach Systemen vorgeschriebener, Math. Ann. 63 (1907), 433–476.Google Scholar
[Schwartz 1950] L., Schwartz, Théorie des noyaux, Proc. Int. Cong. Math. Cambridge 1950, I, 220–230.
[Schwartz 1950/1951] L., Schwartz, Théorie des Distributions, I, II Hermann, Paris, 1950/1951, 3rd edition, 1965.Google Scholar
[Schwartz 1952] L., Schwartz, Transformation de Laplace des distributions, Comm. Sem. Math. Univ. Lund (1952), Tome Supplementaire, 196–206.Google Scholar
[Schwartz 1953/1954] L., Schwartz, Espaces de fonctions différentiables à valeurs vectorielles J. d'Analyse Math. 4 (1953/1954), 88–148.Google Scholar
[Selberg 1940] A., Selberg, Bemerkungen über eine Dirichletsche Reihe, die mit der Theorie der Modulformen nahe verbunden ist, Arch. Math. Naturvid 43 (1940), 47–50.Google Scholar
[Selberg 1954] A., Selberg, Harmonic Analysis, 2. Teil, Vorlesung Niederschrift, Gottingen, 1954; Collected Papers I, Springer, Heidelberg, 1988, 626–674.Google Scholar
[Selberg 1956] A., Selberg, Harmonic analysis and discontinuous groups in weakly symmetric spaces, with applications to Dirichlet series, J. Indian Math. Soc. 20 (1956), 47–87.Google Scholar
[Shahidi 1978] F., Shahidi, Functional equation satisfied by certain L-functions, Comp. Math. 37 (1978), 171–208.Google Scholar
[Shahidi 1985] F., Shahidi, Local coefficients as Artin factors for real groups, Duke Math. J. 52 (1985), 973–1007.Google Scholar
[Shahidi 2010] F., Shahidi, Eisenstein series and automorphic L-functions, AMS Coll. Publ. 58, AMS, 2010.
[Shalika 1974] J. A., Shalika, The multiplicity one theorem for GLn, Ann. Math. 100 (1974), 171–193.CrossRef
[Sobolev 1937] S. L., Sobolev, On a boundary value problem for polyharmonic equations (Russian), Mat. Sb. (NS) 2 (44) (1937), 465–499.Google Scholar
[Sobolev 1938] S. L., Sobolev, On a theorem of functional analysis (Russian), Mat. Sb. (NS) 4 (1938), 471–497.Google Scholar
[Sobolev 1950] S. L., Sobolev, Some Applications of Functional Analysis to Mathematical Physics [Russian], Paul: Leningrad, 1950.Google Scholar
[Speh 1981/1982] B., Speh, The unitary dual of GL3(R) and GL4(R), Math. Ann. 258 (1981/1982), 113–133.
[Stone 1929] M. H., Stone, I, II: Linear transformations in Hilbert space, Proc. Nat. Acad. Sci. 16 (1929), 198–200, 423–425; III: operational methods and group theory, ibid, 16 (1930), 172–175.Google Scholar
[Stone 1932] M. H., Stone, Linear transformations in Hilbert space, AMS, New York, 1932.Google Scholar
[Steklov 1898] W., Steklov, Sur le problème de refroidissement d'une barre hétérogène, C. R. Acad. Sci. Paris 126 (1898), 215–218.Google Scholar
[Sturm 1836] C., Sturm, Mémoire sur les équations différentielles du second ordre, J. de Maths. Pure et Appl. 1 (1836), 106–186.Google Scholar
[Sturm 1833a/1836a] C., Sturm, Analyse d'un mémoire sur les propriétés générales des fonctions qui dépendent d'équations différentielles linéares du second ordre, L'Inst. J. Acad. et Soc. Sci. Nov. 9 (1833) 219–223, summary of Mémoire sur les Équations diff´rentielles linéaires du second ordre, J. Math. Pures Appl. 1 (1836), 106–186 [Sept. 28, 1833].Google Scholar
[Sturm 1833b/1836b] C., Sturm [unnamed note], L'Inst. J. Acad. et Soc. Sci. Nov. 9 (1833) 219– 223, summary of Mémoire sur une classe d'Équations à différences partielles, J. Math. Pures Appl. 1 (1836), 373–444.Google Scholar
[Thomas 1935] L. H., Thomas, The interaction between a neutron and a proton and the structure of H3, Phys. Rev. 47 (1935), 903–909.
[Varadarajan 1989] V. S., Varadarajan, An Introduction to Harmonic Analysis on Semisimple Lie Groups, Cambridge University Press, Cambridge, 1989.Google Scholar
[Venkov 1971] A., Venkov, Expansion in automorphic eigenfunctions of the Laplace operator and the Selberg Trace Formula in the space SO(n, 1)/SO(n), Dokl. Akad. Nauk. SSSR 200 (1971); Soviet Math. Dokl. 12 (1971), 1363–1366.
[Venkov 1979] A., Venkov, Spectral theory of automorphic functions, the Selberg zeta-function, and some problems of analytic number theory and mathematical physics, Russian Math. Surveys 34 no. 3 (1979), 79–153.
[vonNeumann 1929] J., von Neumann, Allgemeine eigenwerttheorie Hermitescher Funktionaloperatoren, Math. Ann. 102 (1929), 49–131.Google Scholar
[vonNeumann 1931] J., von Neumann, Die Eindeutigkeit der Schrödingersche Operatoren, Math. Ann. 104 (1931), 570–578.Google Scholar
[Watson 1918] G. N., Watson, Asymptotic expansions of hypergeometric functions, Trans. Cambridge Phil. Soc. 22 (1918), 277–308.Google Scholar
[Weyl 1910] H., Weyl, Über gewöhnliche Differentialgleichungen mit Singularitäten and die zugehörigen Entwicklungen wilkürlicher Funktionen, Math. Ann. 68 (1910), 220–269.Google Scholar
[Weyl 1925/1926] H., Weyl, Theorie der Darstellung kontinuierlicher half-einfacher Gruppen durch lineare Transformationen, I, Math. Z. 23 (1925), 271–309; II, ibid, 24 (1926), 328–376; III (und Nachtrag), ibid, 377–395, 789–791.Google Scholar
[Wiener 1933] N., Wiener, The Fourier Integral and Certain of Its Applications, Cambridge University Press, Cambridge, 1933.Google Scholar
[Wigner 1939] E., Wigner, On unitary representations of the inhomogeneous Lorentz group, Ann. Math. 40 (1939), 149–204.Google Scholar
[Wong 1990] S.-T., Wong, The meromorphic continuation and functional equations of cuspidal Eisenstein series for maximal cuspidal groups, Memoirs of AMS, 83 (1990), no. 423.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Bibliography
  • Paul Garrett, University of Minnesota
  • Book: Modern Analysis of Automorphic Forms By Example
  • Online publication: 31 August 2018
  • Chapter DOI: https://doi.org/10.1017/9781316650332.010
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Bibliography
  • Paul Garrett, University of Minnesota
  • Book: Modern Analysis of Automorphic Forms By Example
  • Online publication: 31 August 2018
  • Chapter DOI: https://doi.org/10.1017/9781316650332.010
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Bibliography
  • Paul Garrett, University of Minnesota
  • Book: Modern Analysis of Automorphic Forms By Example
  • Online publication: 31 August 2018
  • Chapter DOI: https://doi.org/10.1017/9781316650332.010
Available formats
×