Published online by Cambridge University Press: 05 August 2012
Here we consider various applications of Newton's method, which can be used to compute reciprocals, square roots, and more generally algebraic and functional inverse functions. We then consider unrestricted algorithms for computing elementary and special functions. The algorithms of this chapter are presented at a higher level than in Chapter 3. A full and detailed analysis of one special function might be the subject of an entire chapter!
Introduction
This chapter is concerned with algorithms for computing elementary and special functions, although the methods apply more generally. First we consider Newton's method, which is useful for computing inverse functions. For example, if we have an algorithm for computing y = ln x, then Newton's method can be used to compute x = exp y (see §4.2.5). However, Newton's method has many other applications. In fact, we already mentioned Newton's method in Chapters 1–3, but here we consider it in more detail.
After considering Newton's method, we go on to consider various methods for computing elementary and special functions. These methods include power series (§4.4), asymptotic expansions (§4.5), continued fractions (§4.6), recurrence relations (§4.7), the arithmetic-geometric mean (§4.8), binary splitting (§4.9), and contour integration (§4.10). The methods that we consider are unrestricted in the sense that there is no restriction on the attainable precision – in particular, it is not limited to the precision of IEEE standard 32-bit or 64-bit floating-point arithmetic. Of course, this depends on the availability of a suitable software package for performing floating-point arithmetic on operands of arbitrary precision, as discussed in Chapter 3.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.