1 - Introduction
Published online by Cambridge University Press: 14 December 2023
Summary
In this chapter, we describe a few discrete probability models to which we will come back repeatedly throughout the book. While there exists a vast array of well-studied random combinatorial structures (permutations, partitions, urn models, Boolean functions, polytopes, etc.), our focus is primarily on a limited number of graph-based processes, namely percolation, random graphs, Ising models, and random walks on networks. We will not attempt to derive the theory of these models exhaustively here. Instead we will employ them to illustrate some essential techniques from discrete probability. Note that the toolkit developed in this book is meant to apply to other probabilistic models of interest as well, and in fact many more will be encountered along the way. After a brief review of graph basics and Markov chains theory, we formally introduce our main models. We also formulate various key questions about these models that will be answered (at least partially) later on. We assume that the reader is familiar with the measure-theoretic foundations of probability. A refresher of all required concepts and results is provided in the appendix.
Keywords
- Type
- Chapter
- Information
- Modern Discrete ProbabilityAn Essential Toolkit, pp. 1 - 20Publisher: Cambridge University PressPrint publication year: 2024