Skip to main content Accessibility help
×
Hostname: page-component-76c49bb84f-lvxqv Total loading time: 0 Render date: 2025-07-12T09:18:02.565Z Has data issue: false hasContentIssue false

The Cooley-Tukey FFT and Group Theory

Published online by Cambridge University Press:  25 June 2025

Daniel N. Rockmore
Affiliation:
Dartmouth College, New Hampshire
Dennis M. Healy, Jr
Affiliation:
University of Maryland, College Park
Get access

Summary

In 1965 J. Cooley and J. Tukey published an article detailing an efficient algorithm to compute the Discrete Fourier Transform, necessary for processing the newly available reams of digital time series produced by recently invented analog-to-digital converters. Since then, the CooleyTukey Fast Fourier Transform and its variants has been a staple of digital signal processing.

Among the many casts of the algorithm, a natural one is as an efficient algorithm for computing the Fourier expansion of a function on a finite abelian group. In this paper we survey some of our recent work on he “separation of variables” approach to computing a Fourier transform on an arbitrary finite group. This is a natural generalization of the Cooley-Tukey algorithm. In addition we touch on extensions of this idea to compact and noncom pact groups.

Pure and Applied Mathematics: Two Sides of a Coin

The Bulletin of the AMS for November 1979 had a paper by L. Auslander and R. Tolimieri [3] with the delightful title “Is computing with the Finite Fourier Transform pure or applied mathematics?” This rhetorical question was answered by showing that in fact, the finite Fourier transform, and the family of efficient algorithms used to compute it, the Fast Fourier Transform (FFT), a pillar of the world of digital signal processing, were of interest to both pure and applied mathematicians.

Auslander had come of age as an applied mathematician at a time when pure and applied mathematicians still received much of the same training. The ends towards which these skills were then directed became a matter of taste.

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

Accessibility standard: Unknown

Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×