Skip to main content Accessibility help
×
Hostname: page-component-76c49bb84f-qtd2s Total loading time: 0 Render date: 2025-07-12T04:05:23.206Z Has data issue: false hasContentIssue false

Engineering Applications of the Motion-Group Fourier Transform

Published online by Cambridge University Press:  25 June 2025

Daniel N. Rockmore
Affiliation:
Dartmouth College, New Hampshire
Dennis M. Healy, Jr
Affiliation:
University of Maryland, College Park
Get access

Summary

We review a number of engineering problems that can be posed or solved using Fourier transforms for the groups of rigid-body motions of the plane or three-dimensional space. Mathematically and computationally these problems can be divided into two classes: (1) physical problems that are described as degenerate diffusions on motion groups; (2) enumeration problems in which fast Fourier transforms are used to efficiently compute motion-group convolutions. We examine engineering problems including the analysis of noise in optical communication systems, the allowable positions and orientations reachable with a robot arm, and the statistical mechanics of polymer chains. In all of these cases, concepts from noncommutative harmonic analysis are put to use in addressing real-world problems, thus rendering them tractable.

1. Introduction

Noncommutative harmonic analysis is a beautiful and powerful area of pure mathematics that has connections to analysis, algebra, geometry, and the theory of algorithms. Unfortunately, it is also an area that is almost unknown to engineers. In our research group, we have addressed a number of seemingly intractable “real-world” engineering problems that are easily modeled and/or solved using techniques of noncommutative harmonic analysis. In particular, we have addressed physical/mechanical problems that are described well as functions or processes on the rotation and rigid-body-motion groups. The interactions and evolution of these functions are described using group-theoretic convolutions and diffusion equations, respectively. In this paper we provide a survey of some of these applications and show how computational harmonic analysis on motion groups is used.

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

Accessibility standard: Unknown

Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×