Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-14T14:45:20.474Z Has data issue: false hasContentIssue false

11 - Locally Analytic Representations of p-adic Groups

Published online by Cambridge University Press:  25 November 2023

David Jordan
Affiliation:
University of Edinburgh
Nadia Mazza
Affiliation:
Lancaster University
Sibylle Schroll
Affiliation:
Universität zu Köln
Get access

Summary

This is a survey of Schneider and Teitelbaum’s theory of admissible locally analytic representations of p-adic Lie groups. We explain the basic definitions of p-adic Lie groups and their locally analytic representations. We then introduce the distribution algebra D(G,K) of a p-adic Lie group G and prove that it is a Fréchet–Stein algebra when G is compact. This allows us to define a nice abelian category of admissible representations for any p-adic Lie group G. We finish by briefly describing more recent developments in the theory.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Amice, Y. 1964. Interpolation p-adique. Bull. Soc. Math. France, 92, 117180.Google Scholar
[2]Amice, Y. Duals. Proc. Conf. on p-Adic Analysis, Nijmegen 1978, 115.Google Scholar
[3]Ardakov, K. Equivariant D-modules on rigid analytic spaces. arXiv 1708.07475. To appear in Aste´risque.Google Scholar
[4]Ardakov, K., Wadsley, S. On irreducible representations of compact p-adic analytic groups. Ann. of Math. (2) 178 (2013), no. 3, 453557.Google Scholar
[5]Ardakov, K., Wadsley, S. D-modules on rigid analytic spaces I. arXiv 1501.02215.Google Scholar
[6]Berger, L., Schneider, P., Xie, B. Rigid character groups, Lubin–Tate theory, and (ϕ, Γ)-modules. Mem. Amer. Math. Soc. 263 (2020), no. 1275.Google Scholar
[7]Bosch, S., Gu¨ntzer, U., Remmert, R. Non-Archimedean analysis. A systematic approach to rigid analytic geometry. Grundlehren der Mathematischen Wissenschaften 261, Springer-Verlag, Berlin, 1984.Google Scholar
[8]Breuil, C. Sur quelques repre´sentations modulaires et p-adiques de GL2(Qp). I. Compositio Math. 138 (2003), no. 2, 165188.Google Scholar
[9]Breuil, C. The emerging p-adic Langlands program. Proceedings of I.C.M. 2010, Vol, II, (2010), 203230.Google Scholar
[10]Breuil, C., Herzig, F., Hu, Y., Morra, S., Schraen, B. Conjectures and results on modular representations of GL2(K) for a p-adic field K. arXiv 2102.06188.Google Scholar
[11]Breuil, C., Paskunas, V. Towards a Modulo p Langlands correspondence for GL2. Mem. Amer. Math. Soc. 216 (2012), no. 1016.Google Scholar
[12]Breuil, C., Schneider, P. First steps towards p-adic Langlands functoriality. J. Reine Angew. Math. 610 (2007), 149180.Google Scholar
[13]Caraiani, A., Emerton, M., Gee, T., Geraghty, D., Paskunas, V., Shin, S.W. Patching and the p-adic local Langlands correspondence. Camb. J. Math. 4 (2016), no. 2, 197287.Google Scholar
[14]Colmez, P. Repre´sentations de GL2Qp et (ϕ, Γ)-modules. Aste´risque No. 330 (2010), 281509.Google Scholar
[15]Colmez, P., Dospinescu, G., Paskunas, V. The p-adic local Langlands correspondence for GL2Qp. Camb. J. Math. 2 (2014), no. 1, 147.Google Scholar
[16]Diarra, B. Sur quelques repre´sentations p-adiques de Zp. Indagationes Math. 41 (1979), 481493.Google Scholar
[17]Dixon, J.D., du Sautoy, M.P.F., Mann, A., Segal, D. Analytic pro-p groups. LMS lecture note series 157, Cambridge University Press, Cambridge, 1991.Google Scholar
[18]Dospinescu, G., A.-C. Le Bras. Reveˆtements du demi-plan de Drinfeld et correspondance de Langlands p-adique. Ann. of Math. (2) 186 (2017), no. 2, 312411.Google Scholar
[19]Emerton, M. Locally analytic vectors in representations of locally p-adic analytic groups. Mem. Amer. Math. Soc. 248 (2017), no. 1175.Google Scholar
[20]Emerton, M. Completed cohomology and the p-adic Langlands program. Proceedings of the International Congress of Mathematicians – Seoul 2014 Vol. II, 319–342. Kyung Moon Sa, Seoul, 2014.Google Scholar
[21]Fe´aux de Lacroix, C.T. p-adische Distributionen. Diplomarbeit, Ko´ln, 1993.Google Scholar
[22]Fe´aux de Lacroix, C.T. Einige Resultate u¨ber die topologischen Darstellungen p-adischer Liegruppen auf unendlich dimensionalen Vektorra¨umen u¨ber einem p-adischen Ko¨rper. Thesis. Ko¨ln 1997, Shriftenreihe Math. Inst. Univ. Mu¨nster, 3. Serie, Heft 23 (1999), 1111.Google Scholar
[23]Harris, M., Taylor, R. The geometry and cohomology of some simple Shimura varieties. Annals of Mathematics Studies, vol. 151. Princeton University Press, Princeton, NJ, (2001).CrossRefGoogle Scholar
[24]Henniart, G. Une preuve simple des conjectures de Langlands pour GL(n) sur un corps p-adique. Invent. Math. 113(2) (2000), 439455.Google Scholar
[25]Kohlhaase, J. Invariant distributions on p-adic analytic groups. Duke Math. J. 137, no. 1 (2007), 1962.Google Scholar
[26]Morita, Y. Analytic representations of SL2 over a p-adic number field, II. Automorphic forms of several variables (Katata, 1983), 282–297, Progr. Math., 46, Birkha¨user Boston, Boston, MA (1984).Google Scholar
[27]Orlik, S. Equivariant vector bundles on Drinfeld’s upper half space. Invent. Math. 172 (2008), no. 3, 585656.Google Scholar
[28]Orlik, S., Strauch, M. On Jordan–Ho¨lder series of some locally analytic representations. J. Amer. Math. Soc. 28 (2015), no. 1, 99157.Google Scholar
[29]Patel, D., Schmidt, T., Strauch, M. Locally analytic representations of GL(2, L) via semistable models of P1. J. Inst. Math. Jussieu 18 (2019), no. 1, 125187.Google Scholar
[30]Schmidt, T. Analytic vectors in continuous p-adic representations. Comp. Math. 145 (2009), 247270.Google Scholar
[31]Schmidt, T. Verma modules over p-adic Arens–Michael envelopes of reductive Lie algebras. J. Algebra 390 (2013), 160180.Google Scholar
[32]Schneider, P. Nonarchimedean Functional Analysis. Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2002.CrossRefGoogle Scholar
[33]Schneider, P. p-adic Lie groups. Grundlehren der Mathematischen Wissenschaften, vol. 344. Springer, Heidelberg, (2011).CrossRefGoogle Scholar
[34]Schneider, P., Teitelbaum, J. p-adic Fourier theory. Documenta Math. 6 (2001), 447481.Google Scholar
[35]Schneider, P., Teitelbaum, J. U (g)-finite locally analytic representations. Representation Theory 5 (2001), 111128.Google Scholar
[36]Schneider, P., Teitelbaum, J. Locally analytic distributions and p-adic representation theory, with applications to GL2. J. AMS 15 (2002), 443468.Google Scholar
[37]Schneider, P., Teitelbaum, J. Banach space representations and Iwasawa theory. Israel J. Math. 127 (2002), 359380.Google Scholar
[38]Schneider, P., Teitelbaum, J. Algebras of p-adic distributions and admissible representations. Invent. Math. 153 (2003), 145196.Google Scholar
[39]Schneider, P., Teitelbaum, J. Continuous and locally analytic representation theory. Lectures at Hangzhou (2004), available at https://ivv5hpp.uni-muenster.de/u/pschnei/publ/lectnotes/hangzhou.pdf.Google Scholar
[40]Scholze, P. The Langlands Correspondence for GLn over p-adic fields. Invent. Math. 192(3) (2013), 663715.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×