from Part II - Self assembly
Published online by Cambridge University Press: 06 January 2011
Cubic phases
Introduction to cubic phases
With any curved bilayer or topologically closed region such as single- or multi-walled vesicles, there is an inevitable conflict due to internal packing constraints (cf. Fig. 9.8 and 10.2).
In the energetically optimal configuration, lipids packed into the outer bilayer have normal curvature. The hydrocarbon chains are stretched. By contrast, the inner surfactants have reverse curvature. The chains are compressed. So although the interior of a bilayer can be considered fluid-like, above the Krafft (gel) temperature of the lipid it is asymmetric. As we have seen, and re-summarize, this necessary frustration has several consequences. The first is that when the radius becomes small enough, the interior layers of a multilamellar vesicle structure must collapse into aggregates different in structure to that of a bilayer. The interior can be micelles. Or it can be bicontinuous. This gives rise to supra-aggregation as a normal and expected state of self assembly. Or else the interior can be empty and surfactant-free. The second consequence is that a single-walled bilayer or vesicle has to have a radius (typically 100 nm) sufficiently large to accommodate this additional internal packing condition.
There is another way that the frustration can be relieved.
The bilayer-forming lipids or surfactants have a surfactant parameter around vH/(aPlH) ∼ 1, or <1. The average of the principal curvatures at the interface is zero for a flat bilayer.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.