Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-26T18:18:22.916Z Has data issue: false hasContentIssue false

5 - Quantum mechanical forces in condensed media

from Part I - Molecular forces

Published online by Cambridge University Press:  06 January 2011

Barry W. Ninham
Affiliation:
Australian National University, Canberra
Pierandrea Lo Nostro
Affiliation:
Università degli Studi di Firenze, Italy
Get access

Summary

Lifshitz theory and its extensions: an overview

Molecular recognition

The ideas behind the DLVO theory of long-range forces in colloidal particle interactions and of the electrical double layer that we have just outlined held centre stage in colloid science for at least 70 years. Quantitatively, as already remarked, agreement between experiment and theory was illusory, except at salt concentrations less than 10−2 M, or at most 10−1 M. It was illusory in the sense that while classical theory captured some essentials of the forces between ions and macromolecules, ion specificity was still missing. While the electrical double-layer forces decayed exponentially as predicted, the magnitude of the forces changed with a change in counterion or co-ion. Recall our typical examples. A change in counterion in a background electrolyte from Br to OAc could produce an increase in magnitude of the forces by a factor of 50 to 100! The same will be seen to occur with different surfaces with a change from Na+ to Li+. We will see much more of this specificity later. These differences depended on the nature of the charged interacting surfaces and, at the same electrolyte concentration, on the counterion. They occur even with a change in an apparently indifferent co-ion in an intervening electrolyte. The accommodation of such results could only be achieved by calling in more unquantified fitting parameters. This is unsatisfactory as predictability is lost. The attractive van der Waals forces were obscured by short-range effects due to solvent structure.

Type
Chapter
Information
Molecular Forces and Self Assembly
In Colloid, Nano Sciences and Biology
, pp. 84 - 111
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Shubin, V. E. and P. Kekicheff, J. Coll. Interface Sci. 155 (1993), 108–123.CrossRef
Niven, W. D. (ed.), The Scientific Papers of James Clerk Maxwell, 2 vol. (1890, reissued in 1965).
Maxwell, J. C., Capillary action. In Encyclopaedia Britannica, 9th edn (1876) updated by Lord Rayleigh in the 11th edn, building on ideas of van der Waals and Poisson.
Dzyaloshinskii, I. E., Lifshitz, E. M. and Pitaevskii, L. P., Adv. Phys. 10 (1961), 165–209.CrossRef
Abrikosov, A. A., Gor'kov, L. P. and Dzyaloshinskii, I. E., Quantum Field Theoretical Methods in Statistical Physics. 2nd edn. London: Pergamon Press (1961).Google Scholar
Deryaguin, B. V. and Abrikosova, I. I., J. Exp. Theor. Phys. 30 (1956), 993–1006.
Deryaguin, B. V., Abrikosova, I. I. and Lifshitz, E. M., Q. Rev. Chem. Soc. (London) 10 (1956), 295–329.CrossRef
Richmond, P. and Ninham, B. W., J. Phys. C Solid State Phys. 4 (1971), 1988–1993.CrossRef
Ninham, B. W., Parsegian, V. A. and Weiss, G. H., J. Stat. Phys. 2 (1970), 323–328.CrossRef
Mahanty, J. and Ninham, B. W., Dispersion Forces. London: Academic Press (1976).Google Scholar
Parsegian, V. A., Van der Waals Forces: a handbook for biologists, chemists, engineers, and physicists. Cambridge: Cambridge University Press (2006).Google Scholar
Parsegian, V. A. and Ninham, B. W., Nature 224 (1969), 1197–1198.CrossRef
Ninham, B. W. and Parsegian, V. A., J. Chem. Phys. 52 (1970), 4578–4587.CrossRef
Ninham, B. W. and Parsegian, V. A., Biophys. J. 10 (1970), 646–663.CrossRef
Ninham, B. W. and Parsegian, V. A., Biophys. J. 10 (1970), 664–674.CrossRef
Ninham, B. W. and Yaminsky, V. V., Langmuir 13 (1997), 2097–2108.CrossRef
Israelachvili, J. N., Intermolecular and Surface Forces: with applications to colloidal and biological systems. Londaon: Academic Press (1985–2004).Google Scholar
White, L. R., Israelachvili, J. N. and Ninham, B. W., J. Chem. Soc. Faraday Trans. I 72 (1976), 2526–2536).CrossRef
Richmond, P., Ninham, B. W. and Ottewill, R. H., J. Coll. Interface Sci. 45 (1973), 69–80.CrossRef
Beaglehole, D., Radlinska, E. Z., Christenson, H. K. and Ninham, B. W., Phys. Rev. Lett. 66 (1991), 2084–2087.CrossRef
Mahanty, J. and Ninham, B. W., J. Chem. Soc. Faraday Trans. II 70 (1974), 637–650.CrossRef
Mahanty, J. and Ninham, B. W., Disc. Faraday Soc. 59 (1975), 13–21.CrossRef
Beaglehole, D., Radlinska, E. Z., Christenson, H. K., Ninham, B. W., Langmuir 7 (1991), 1843–1845.CrossRef
Anderson, C. H. and Sabisky, E. S., Phys. Rev. Lett. 24 (1970), 1049–1052.CrossRef
Sabisky, E. S. and Anderson, C. H., Phys. Rev. A 7 (1973), 790–806.CrossRef
Richmond, P. and Ninham, B. W., J. Low Temp. Phys. 5 (1971), 177–189.CrossRef
Chan, D. and Ninham, B. W., J. Chem. Soc. Faraday Trans. II 70 (1974), 586–596.CrossRef
Ninham, B. W. and Parsegian, V. A., J. Chem. Phys. 52 (1970), 4578–4587.CrossRef
Lyklema, J. and Mysels, K. J., J. Am. Chem. Soc. 87 (1965), 2539–2546.CrossRef
Mitchell, D. J. and Ninham, B. W., J. Chem. Phys. 56 (1972), 1117–1126.CrossRef
Davies, B., Ninham, B. W. and Richmond, P., J. Chem. Phys. 58 (1973), 744–750.CrossRef
Rajter, R. F., Podgornik, R., Parsegian, V. A., French, R. H. and Ching, W. Y., Phys. Rev. B 76 (2007), 045417.CrossRef
Mahanty, J., Il Nuovo Cimento B 22 (1974), 110–120.CrossRef
Parsons, D. F. and Ninham, B. W., Langmuir (2009) in press.
Andersson, S. and Ninham, B. W., Solid State Sci. 5 (2003), 683–693.CrossRef
Boström, M. and Ninham, B. W., Biophys. Chem. 114 (2005), 95–101.CrossRef
Boström, M. and Ninham, B. W, J. Phys. Chem. B 108, (2004), 12593–12595.CrossRef
Boström, M. and Ninham, B. W., Langmuir 20 (2004), 7569–7574.CrossRef
Boström, M., Longdell, J. J. and Ninham, B. W., Phys. Rev. A 64 (2001), 062702.CrossRef
Blum, Z., Hyde, S. T. and Ninham, B. W., J. Phys. Chem. 97 (1993), 661–665.CrossRef
Hyde, S., Andersson, S., Larsson, K., Blum, Z., Landh, T., Lidin, S. and Ninham, B. W., The Language of Shape. The role of curvature in condensed matter physics, chemistry and biology. Amsterdam: Elsevier (1997).Google Scholar
Ninham, B. W., Nossal, R. and Zwanzig, R., J. Chem. Phys. 51 (1969), 5028–5033.CrossRef
Ninham, B. W. and Daicic, J., Phys. Rev. A 57 (1998), 1870–1880.CrossRef
Wennerström, H., Daicic, J. and Ninham, B. W., Phys. Rev. A 60 (1999), 2581–2584.CrossRef
Boström, M., Longdell, J. J., Mitchell, D. J. J. and Ninham, B. W., Eur. Phys. J. D 22 (2003), 47–52.
Boström, M., Longdell, J. J. and Ninham, B. W., Europhys. Lett. 59 (2002), 21–27.CrossRef
Boström, M. and Ninham, B. W., Phys. Rev. A 69 (2004), 1–2.CrossRef
Wright, R. H., Nature 178 (1956), 638.
Cardé, R. T. and Minks, A. K., Insect Pheromone Research: new directions. New York: Chapman & Hall (1997), 111–163.CrossRefGoogle Scholar
Kanaujia, S. and Kaissling, K. E., J. Insect Physiol. 31 (1985), 71–81.CrossRef
Chen, G., Wu, J., Lu, Q., Gutierrez, H. R., Xiong, Q., Pellen, M. E., Petko, J. S., Werner, D. H. and Eklund, P. C., Nano Lett. 8 (2008), 1341–1346.CrossRef
Ninham, B. W. and Boström, M., Phys. Rev. A 67 (2003), 030701.CrossRef
Casimir, H. B. G., Proc. K. Ned. Akad. Wet. 51 (1948), 793–796.
Casimir, H. B. G., J. Chim. Phys. 46 (1949), 407–409.CrossRef
Casimir, H. B. G. and Polder, D., Nature 158 (1946), 787–788.CrossRef
Casimir, H. B. G. and Polder, D., Phys. Rev. 73 (1948), 360–372.CrossRef
Verwey, E. J. W. and Overbeeck, J. T. G., Theory of the Stability of Lyophobic Colloids. Amsterdam: Elsevier (1948).Google Scholar
Landau, L. D. and Lifshitz, E. M., Statistical Physics. Oxford: Butterwoth-Heinemann (1951).Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×