Published online by Cambridge University Press: 22 November 2017
The Apoptosis Cellular Pathway
Apoptosis is the process of programmed cell death and is critical for growth and development and the maintenance of cellular homeostasis. Cells committed to death through the apoptotic pathway are dissembled according to a coordinated sequence of events. The classic morphologic changes during apoptosis are loss of communication and detachment from neighboring cells, condensation of chromatin at the nuclear membrane, fragmentation of the nuclear membrane, cell shrinkage, and formation of apoptotic bodies which are subsequently phagocytosed. Apoptosis is energy dependent and a distinct feature is that the cell's plasma membrane remains intact. There is no accompanying inflammatory response and no evidence of the cell's previous existence. In contrast, cellular necrosis is a disorderly process which results in surrounding inflammation and oftentimes residual tissue scarring.
Apoptosis is mediated through a number of cellular proteins and signaling pathways (Figure 11.1). The major family of proteins responsible for apoptosis is cysteine proteases called caspases. Caspases are inactivated in the cell cytoplasm (as procaspases) until receiving a death signal. Once activated, initiator caspases activate effector caspases which in turn activate the rest of the machinery needed for programmed cell death. Activation of the initiator caspases occurs via the intrinsic or mitochondrial pathway or via the extrinsic pathway.
The intrinsic (mitochondrial) pathway is induced by cellular stress or the loss of survival signals. Upon receiving such signals, mitochondria release cytochrome c through pores in the mitochondrial membrane causing apoptosome formation through oligomerization of molecules, Apaf-1 in vertebrates. Apoptosome formation results in activation of initiator caspases. The Bcl-2 family of proteins regulates the mitochondrial pathway through both anti-apoptotic (e.g., Bcl-2) and pro-apoptotic (e.g., Bak, Bax) properties.
The extrinsic pathway is activated by the binding of death ligands (e.g., tumor necrosis factor alpha) to the extracellular component of death receptors in the cell membrane. This results in the recruitment of adaptor molecules which activate initiator caspases. Subsquent formation of death receptor signaling complexes activates effector caspases leading to apoptosis. An immune response or tumorigenesis can initiate the extrinsic pathway.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.