Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-28T01:34:48.558Z Has data issue: false hasContentIssue false

5 - The Grothendieck ring of varieties

Published online by Cambridge University Press:  07 October 2011

Johannes Nicaise
Affiliation:
Katholieke Universiteit Leuven
Julien Sebag
Affiliation:
Université Rennes
Raf Cluckers
Affiliation:
Université de Lille
Johannes Nicaise
Affiliation:
Katholieke Universiteit Leuven, Belgium
Julien Sebag
Affiliation:
Université de Rennes I, France
Get access

Summary

Introduction

Since its creation in the middle of the nineties, the theory of motivic integration has been developed in different directions, following a geometric and/or model-theoretic approach. The theory has profound applications in several areas of mathematics, such as algebraic geometry, singularity theory, number theory and representation theory.

A common feature of the different versions of motivic integration is that the integrals take their values in an appropriate Grothendieck ring, often the Grothendieck ring of varieties. Many applications of motivic integration involve equalities of certain motivic integrals, and hence equalities in the Grothendieck ring of varieties; see, for example, the Batyrev-Kontsevich Theorem [6], which motivated the introduction of motivic integration. Therefore, it is natural to ask for the geometric meaning behind such equalities in the Grothendieck ring.

Unfortunately, the Grothendieck ring of varieties is quite hard to grasp, and little is known about it; many basic and fundamental questions remain unanswered. The central question is arguably the one raised by Larsen and Lunts (see Section 6.2), for which only partial results have been obtained so far.

The present paper is a survey on the Grothendieck ring of varieties. We recall its definition (Section 3), and its main realization maps (Section 4). These realizations constitute the motivic nature of the Grothendieck ring. Besides, we motivate the study of the Grothendieck ring by listing the principal known results, and formulating some challenging open problems (Section 5), which are connected to fundamental questions in algebraic geometry.

Type
Chapter

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Abramovich, D.; Karu, K.; Matsuki, K.; Włodarczyk, J. Torification and factorization of birational maps. J. Amer. Math. Soc. 15 (2002), no. 3, 531–572.CrossRefGoogle Scholar
[2] André, Y.Une introduction aux motifs (motifs purs, motifs mixtes, périodes). Panoramas et Synthèses, 17. Société Mathématique de France, Paris, 2004.Google Scholar
[3] Beauville, A.Variétés de Prym et jacobiennes intermédiaires. Ann. Sci. École Norm. Sup. (4) 10 (1977), no. 3, 309–391.CrossRefGoogle Scholar
[4] Beauville, A.; Colliot-Thélène, J.-L.; Sansuc, J.-J.; Swinnerton-Dyer, P.Variétés stablement rationnelles non rationnelles. Ann. of Math. (2) 121 (1985), no. 2, 283–318.CrossRefGoogle Scholar
[5] Bittner, F.The universal Euler characteristic for varieties of characteristic zero. Compos. Math. 140 (2004), no. 4, 1011–1032.CrossRefGoogle Scholar
[6] Blickle, M.A short course on geometric motivic integration, this volume.
[7] Cluckers, R.; Loeser, F.Constructible motivic functions and motivic integration. Invent. Math. 173 (2008), no. 1, 23–121.CrossRefGoogle Scholar
[8] W., Danielewski. On a cancellation problem and automorphism groups of affine algebraic varieties. Preprint, 1989.
[9] Deligne, P.Théorie de Hodge II. Inst. Hautes Études Sci. Publ. Math. No. 40 (1971), 5–57.CrossRefGoogle Scholar
[10] Deligne, P.Théorie de Hodge III. Inst. Hautes Études Sci. Publ. Math. No. 44 (1974), 5–77.CrossRefGoogle Scholar
[11] T., Ekedahl. The Grothendieck group of algebraic stacks. Preprint, arXiv:0903.3143v2.
[12] Gillet, H.; Soulé, C.Descent, motives and K-theory. J. Reine Angew. Math. 478 (1996), 127–176.Google Scholar
[13] Göttsche, L.On the motive of the Hilbert scheme of points on a surface. Math. Res. Lett. 8 (2001), no. 5-6, 613–627.CrossRefGoogle Scholar
[14] Gromov, M.Endomorphisms of symbolic algebraic varieties. J.Eur.Math. Soc. (JEMS) 1 (1999), no. 2, 109–197.CrossRefGoogle Scholar
[15] Grothendieck, A.; Dieudonné, J.Éléments de Géométrie Algébrique (EGA) Publ. Math. IHES, 4, 8, 11, 17, 20, 24, 28, 32, 1960–1967Google Scholar
[16] ,Correspondance Grothendieck-Serre. Edited by Pierre, Colmez and Jean-Pierre, Serre. Documents Mathématiques (Paris), 2. Société Mathématique de France, Paris, 2001.Google Scholar
[17] Guillén, F.; Navarro Aznar, V.. Un critère d'extension des foncteurs définis sur les schémas lisse. Publ. Math. Inst. Hautes Études Sci. No. 95 (2002), 1–91.CrossRefGoogle Scholar
[18] S.M., Gusein-Zade, I., Luengo and A., Melle-Hernández. A power structure over the Grothendieck ring of varieties.Math. Res. Lett. 11(1):49–57, 2004.Google Scholar
[19] S.M., Gusein-Zade, I., Luengo and A., Melle-Hernández. Power structure over the Grothendieck ring of varieties and generating series of Hilbert schemes of points.Michigan Math. J. 54(2):353–359, 2006.Google Scholar
[20] Hartshorne, R.Algebraic geometry. Graduate Texts in Mathematics, No. 52.Springer-Verlag, New York-Heidelberg, 1977.Google Scholar
[21] Heinloth, F.A note of functional equations for zeta functions with values in Chow motives.Ann. Inst. Fourier, 57 (2007), no. 6, 1927–1945.CrossRefGoogle Scholar
[22] Hogadi, A.Products of Brauer-Severi surfaces. Proc. Amer. Math. Soc. 137 (2009), no. 1, 45–50.CrossRefGoogle Scholar
[23] Jannsen, U.Mixed motives and algebraic K-theory. With appendices by S., Bloch and C., Schoen. Lecture Notes in Mathematics, 1400. Springer-Verlag, Berlin, 1990.Google Scholar
[24] Kapranov, M. The elliptic curve in the S-duality theory and Eisenstein series for Kac-Moody groups. Preprint, arXiv:math/0001005.
[25] Kollár, J.Conics in the Grothendieck ring. Adv. Math. 198 (2005), no. 1, 27–35.CrossRefGoogle Scholar
[26] Kraj´ßßč;ek, J.; Scanlon, T.Combinatorics with definable sets: Euler characteristics and Grothendieck rings. Bull. Symbolic Logic 6 (2000), no. 3, 311–330.CrossRefGoogle Scholar
[27] Larsen, M.; Lunts, V. A.Motivic measures and stable birational geometry. Mosc. Math. J. 3 (2003), no. 1, 85–95.Google Scholar
[28] Larsen, M.; Lunts, V. A.Rationality criteria for motivic zeta functions. Compos. Math. 140 (2004), no. 6, 1537–1560.CrossRefGoogle Scholar
[29] Liu, Q.; Sebag, J.The Grothendieck ring of varieties and piecewise isomorphisms, to appear in Math. Z.
[30] Loeser, F.; Sebag, J.Motivic integration on smooth rigid varieties and invariants of degenerations, Duke Math. Journal, Vol 119 (2003), no. 2, 315–344.Google Scholar
[31] Naumann, N.Algebraic independence in the Grothendieck ring of varieties. Trans. Amer. Math. Soc. 359 (2007), no. 4, 1653–1683CrossRefGoogle Scholar
[32] Nicaise, J.A trace formula for varieties over a discretely valued field, J. Reine Angew. Math. 650 (2011), 193–238.Google Scholar
[33] Nicaise, J.; Sebag, J.Motivic invariants of rigid varieties, and applications to complex singularities, in this volume.
[34] Olivier, J.-P.Anneaux absolument plats universels et épimorphismes à buts réduits, Séminaire Samuel. Algèbre commutative, 2 (1967-1968), Exposé No. 6. Secrétariat mathématique, Paris 1967-1968.Google Scholar
[35] Olivier, J.-P.Le foncteur T−∞. Globalisation du foncteur T, Séminaire Samuel. Algèbre commutative, 2 (1967-1968), Exposé No 9. Secrétariat mathématique, Paris 1967-1968.Google Scholar
[36] Peters, C. A. M.; Steenbrink, J. H. M.Mixed Hodge structures. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 52. Springer-Verlag, Berlin, 2008.Google Scholar
[37] Poonen, B.The Grothendieck ring of varieties is not a domain. Math. Res. Lett. 9 (2002), no. 4, 493–497.CrossRefGoogle Scholar
[38] Rökaeus, K. The computation of the classes of some tori in the Grothendieck ring of varieties. Preprint, arXiv:0708.4396.
[39] Scholl, A. J.Classical motives. In Motives, Seattle, 1991, volume 55 of Proc. Symp. Pure Math., pages 163–187. Amer. Math. Soc., 1994.Google Scholar
[40] Sebag, J.Intégration motivique sur les schémas formels. Bull. Soc. Math. France 132 (2004), no. 1, 1–54.CrossRefGoogle Scholar
[41] Sebag, J.Variations on a question of Larsen and Lunts. Proc. Am. Math. Soc., vol. 138 (2010), no. 4, 1231–1242.CrossRefGoogle Scholar
[42] Sebag, J.Variétés K-équivalentes et isomorphismes par morceaux. to appear in Archiv Math. 94 (2010), no. 3, 207–219.CrossRefGoogle Scholar
[43] Voisin, C.Hodge theory and complex algebraic geometry I, II. Volumes 76 and 77 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, 2002 and 2003.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×