Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-28T01:56:15.870Z Has data issue: false hasContentIssue false

7 - Motivic invariants of rigid varieties, and applications to complex singularities

Published online by Cambridge University Press:  07 October 2011

Johannes Nicaise
Affiliation:
Katholieke Universiteit Leuven
Julien Sebag
Affiliation:
Université Rennes
Raf Cluckers
Affiliation:
Université de Lille
Johannes Nicaise
Affiliation:
Katholieke Universiteit Leuven, Belgium
Julien Sebag
Affiliation:
Université de Rennes I, France
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] N., A'campo. Le nombre de Lefschetz d'une monodromie. Indag. Math., 35:113–118, 1973.Google Scholar
[2] L., Alonso Tarrío, A., Jeremías López, and M., Pérez Rodríguez. Infinitesimal lifting and Jacobi criterion for smoothness on formal schemes. Commun. Algebra, 35(4):1341–1367, 2007.Google Scholar
[3] V. G., Berkovich. Spectral theory and analytic geometry over nonarchimedean fields, volume 33 of Mathematical Surveys and Monographs. AMS, 1990.Google Scholar
[4] V. G., Berkovich. Étale cohomology for non-Archimedean analytic spaces. Publ. Math., Inst. Hautes Étud. Sci., 78:5–171, 1993.Google Scholar
[5] V. G., Berkovich. Vanishing cycles for formal schemes, II. Invent. Math., 125(2):367–390, 1996.Google Scholar
[6] V. G., Berkovich. A non-Archimedean interpretation of the weight zero subspaces of limit mixed Hodge structures. In Algebra, Arithmetic and Geometry - Manin Festschrift (to appear). Boston: Birkhäuser.
[7] P., Berthelot. Cohomologie rigide et cohomologie rigide à supports propres. Prepublication, Inst. Math. de Rennes, 1996.Google Scholar
[8] S., Bosch, U., Güntzer, and R., Remmert. Non-Archimedean analysis. A systematic approach to rigid analytic geometry, volume 261 of Grundlehren der Mathematischen Wissenschaften. Springer Verlag, 1984.Google Scholar
[9] S., Bosch and W., Lütkebohmert. Formal and rigid geometry. I: Rigid spaces. Math. Ann., 295(2):291–317, 1993.Google Scholar
[10] S., Bosch and W., Lütkebohmert. Formal and rigid geometry. II: Flattening techniques. Math. Ann., 296(3):403–429, 1993.Google Scholar
[11] S., Bosch, W., Lütkebohmert, and M., Raynaud. Néron models, volume 21. Ergebnisse der Mathematik und ihrer Grenzgebiete, 1990.Google Scholar
[12] S., Bosch and K., Schlöter. Néron models in the setting of formal and rigid geometry. Math. Ann., 301(2):339–362, 1995.Google Scholar
[13] C.L., Chai. Néron models for semiabelian varieties: congruence and change of base field. Asian J. Math., 4(4):715–736, 2000.Google Scholar
[14] A. J., De Jong. Crystalline Dieudonné module theory via formal and rigid geometry. Publ. Math., Inst. Hautes Étud. Sci., 82:5–96, 1995.Google Scholar
[15] J., Denef and F., Loeser. Geometry on arc spaces of algebraic varieties. Progr. Math., 201:327–348, 2001.Google Scholar
[16] J., Denef and F., Loeser. Lefschetz numbers of iterates of the monodromy and truncated arcs. Topology, 41(5):1031–1040, 2002.Google Scholar
[17] A., Dimca. Singularities and Topology of Hypersurfaces. Springer-Verlag, 1992.Google Scholar
[18] J., Fresnel and M., Van Der Put. Rigid analytic geometry and its applications, volume 218 of Progress in Mathematics. Boston, MA: Birkhäuser, 2004.Google Scholar
[19] M.J., Greenberg. Schemata over local rings. Ann. Math., 73(2):624–648, 1961.Google Scholar
[20] M.J., Greenberg. Schemata over local rings II. Ann. Math., 78(2):256–266, 1963.Google Scholar
[21] A., Grothendieck and J., Dieudonné. Eléments de Géométrie Algébrique, I. Publ. Math., Inst. Hautes Étud. Sci., 4:5–228, 1960.Google Scholar
[22] A., Grothendieck and J., Dieudonné. Eléments de Géométrie Algébrique, III. Publ. Math., Inst. Hautes Étud. Sci., 11:5–167, 1961.Google Scholar
[23] A., Grothendieck and J., Dieudonné. Eléments de Géométrie Algébrique, IV. Publ. Math., Inst. Hautes Étud. Sci., 32:5–361, 1967.Google Scholar
[24] L., Halvard Halle and J., Nicaise. Motivic zeta functions for abelian varieties, and the monodromy conjecture. Adv. Math., 227:610–653, 2011.Google Scholar
[25] L., Halvard Halle and J., Nicaise. Jumps and monodromy of abelian varieties. preprint, arXiv:1009.3777.
[26] J., Igusa. An introduction to the theory of local zeta functions. Studies in Advanced Mathematics. AMS, 2000.Google Scholar
[27] L., Illusie. Grothendieck's Existence Theorem in formal geometry. In B., Fantechi, L., Goettsche, L., Illusie, S., Kleiman, N., Nitsure, and A., Vistoli, editors, Fundamental Algebraic Geometry, Grothendieck's FGA explained, Mathematical Surveys and Monographs. AMS, 2005.Google Scholar
[28] J., Lipman. The Picard group of a scheme over an Artin ring. Publ. Math., Inst. Hautes Étud. Sci., 46:15–86, 1976.Google Scholar
[29] F., Loeser and J., Sebag. Motivic integration on smooth rigid varieties and invariants of degenerations. Duke Math. J., 119:315–344, 2003.Google Scholar
[30] J. S., Milne. Étale Cohomology, volume 33 of Princeton Mathematical Series. Princeton University Press, 1980.Google Scholar
[31] J., Milnor. Singular points of complex hypersurfaces, volume 61 of Annals of Math. Studies. Princeton University Press, 1968.Google Scholar
[32] V., Navarro Aznar. Sur la théorie de Hodge-Deligne. Invent. Math., 90:11–76, 1987.Google Scholar
[33] J., Nicaise. Formal and rigid geometry: an intuitive introduction and some applications. Enseign. Math. (2), 54:1–37, 2008.Google Scholar
[34] J., Nicaise. A trace formula for rigid varieties, and motivic weil generating series for formal schemes. Math. Ann., 343(2):285–349, 2009.Google Scholar
[35] J., Nicaise. Singular cohomology of the analytic Milnor fiber, and mixed Hodge structure on the nearby cohomology. J. Algebraic Geom., 20:199–237, 2011.Google Scholar
[36] J., Nicaise. An introduction to p-adic and motivic zeta functions and the monodromy conjecture. In: G., Bhowmik, K., Matsumoto and H., Tsumura (eds.), Algebraic and analytic aspects of zeta functions and L-functions. Volume 21 of MSJ Memoirs, Mathematical Society of Japan, Tokyo, 2010, pages 115–140.Google Scholar
[37] J., Nicaise. A trace formula for varieties over a discretely valued field. J. Reine Angew. Math., 650:193–238, 2011.Google Scholar
[38] J., Nicaise. Trace formula for component groups of Néron models. preprint, arXiv:0901.1809v2.
[39] J., Nicaise. Geometric criteria for tame ramification. preprint, arXiv:arXiv:0910.3812.
[40] J., Nicaise and J., Sebag. Motivic Serre invariants of curves. Manuscr. Math., 123(2):105–132, 2007.Google Scholar
[41] J., Nicaise and J., Sebag. The motivic Serre invariant, ramification, and the analytic Milnor fiber. Invent. Math., 168(1):133–173, 2007.Google Scholar
[42] J., Nicaise and J., Sebag. Motivic Serre invariants and Weil restriction.
[43] M., Rapoport and Th., Zink. Period spaces for p-divisible groups. Volume 141 of Annals of Mathematics Studies.Princeton University Press, Princeton, NJ, 1996.Google Scholar
[44] M., Raynaud. Géométrie analytique rigide d'après Tate, Kiehl,…. Mémoires de la S.M.F., 39-40:319–327, 1974.Google Scholar
[45] B., Rodrigues and W., Veys. Poles of Zeta functions on normal surfaces. Proc. London Math. Soc., 87(3):164–196, 2003.Google Scholar
[46] T., Saito. Vanishing cycles and geometry of curves over a discrete valuation ring. Am. J. Math., 109:1043–1085, 1987.Google Scholar
[47] J., Sebag. Intégration motivique sur les schémas formels. Bull. Soc. Math. France, 132(1):1–54, 2004.Google Scholar
[48] J.-P., Serre. Groupes algébriques et corps de classes. Paris: Hermann & Cie, 1959.Google Scholar
[49] J.-P., Serre. Corps locaux. Paris: Hermann & Cie, 1962.Google Scholar
[50] J.-P., Serre. Classification des variétés analytiques p-adiques compactes. Topology, 3:409–412, 1965.Google Scholar
[51] J.H.M., Steenbrink. Mixed Hodge structure on the vanishing cohomology. In P., Holm, editor, Real and complex Singularities, Proc. Nordic Summer Sch., Symp. Math., Oslo 1976, pages 525–563. Alphen A.D. Rijn: Sijthoff & Noordhoff, 1977.Google Scholar
[52] M., Temkin. Desingularization of quasi-excellent schemes in characteristic zero. Adv. Math., 219(2):488–522, 2008.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×