Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-02-01T00:04:22.807Z Has data issue: false hasContentIssue false

Chapter 2 - Antigens

Published online by Cambridge University Press:  30 January 2025

Anna Porwit
Affiliation:
Lunds Universitet, Sweden
Marie Christine Béné
Affiliation:
Université de Nantes, France
Get access

Summary

Flow cytometry relies on the use of fluorochrome-conjugated antibodies, most of them identified and produced after the discovery of the technology allowing to generate large amounts of monoclonal antibodies. Hence, nearly all these reagents are named after the cluster of differentiation (CD) number that was given to newly discovered molecules they recognize, many of them having no other name. Although some CDs have become very popular and well known, others are less familiar. This chapter provides a guide to recover the characteristics of surface or cytoplasmic antigens explored with the CDs most frequently used in the field of haematological malignancies.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Köhler, G, Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975; 256: 495497.CrossRefGoogle ScholarPubMed
Unanue, ER, Grey, HM, Rabellino, E, Campbell, P, Schmidtke, J. Immunoglobulins on the surface of lymphocytes. II. The bone marrow as the main source of lymphocytes with detectable surface-bound immunoglobulin. J Exp Med 1971; 133: 11881198.CrossRefGoogle Scholar
Jondal, M, Holm, G, Wigzell, H. Surface markers on human T and B lymphocytes. I. A large population of lymphocytes forming nonimmune rosettes with sheep red blood cells. J Exp Med 1972; 136: 207215.CrossRefGoogle Scholar
Bennett, JM, Catovsky, D, Daniel, MT, et al. Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group. Br J Haematol 1976; 33: 451458.CrossRefGoogle ScholarPubMed
Lakhtakia, R, Burney, I. A Historical tale of two lymphomas: part II: non-Hodgkin lymphoma. Sultan Qaboos Univ Med J 2015; 15: e317e321.CrossRefGoogle ScholarPubMed
Bernard, A, Boumsell, L. The clusters of differentiation (CD) defined by the First International Workshop on Human Leucocyte Differentiation Antigens. Hum Immunol 1984; 11: 110.CrossRefGoogle ScholarPubMed
Zola, H, Swart, B. The human leucocyte differentiation antigens (HLDA) workshops: the evolving role of antibodies in research, diagnosis and therapy. Cell Res 2005; 15: 691694.CrossRefGoogle ScholarPubMed
Hashimoto, S, Nagai, S, Sese, J, et al. Gene expression profile in human leukocytes. Blood 2003; 101: 35093513.CrossRefGoogle ScholarPubMed
Nam, HJ, Poy, F, Saito, H, Frederick, CA. Structural basis for the function and regulation of the receptor protein tyrosine phosphatase CD45 J Exp Med 2005; 201: 441452.CrossRefGoogle ScholarPubMed
Maguer-Satta, V, Besançon, R, Bachelard-Cascales, E. Concise review: neutral endopeptidase (CD10): a multifaceted environment actor in stem cells, physiological mechanisms, and cancer. Stem Cells 2011; 29: 389396.CrossRefGoogle ScholarPubMed
Krych-Goldberg, M, Atkinson, JP. Structure-function relationships of complement receptor type 1. Immunol Rev 2001; 180: 112122.CrossRefGoogle ScholarPubMed
Silverstein, RL, Febbraio, M. CD36, a scavenger receptor involved in immunity, metabolism, angiogenesis, and behavior. Sci Signal 2009; 2: re3.CrossRefGoogle ScholarPubMed
Alattar, AG, Storry, JR, Olsson, ML. Evidence that CD36 is expressed on red blood cells and constitutes a novel blood group system of clinical importance. Vox Sang 2024; 119(5): 496504.CrossRefGoogle ScholarPubMed
Ferrero, E, Malavasi, F. The metamorphosis of a molecule: from soluble enzyme to the leukocyte receptor CD38. J Leukoc Biol 1999; 65: 151161.CrossRefGoogle Scholar
van Kooten, C, Banchereau, J. CD40-CD40 ligand. J Leukoc Biol 2000; 67: 217.CrossRefGoogle ScholarPubMed
Pedraza-Alva, G, Rosenstein, Y. CD43: one molecule, many tales to recount. Signal Transduct 2007; 7: 372385.CrossRefGoogle Scholar
Elishmereni, M, Levi-Schaffer, F. CD48: A co-stimulatory receptor of immunity. Int J Biochem Cell Biol 2011; 43: 2528.CrossRefGoogle ScholarPubMed
Siegmund, D, Lang, I, Wajant, H. Cell death-independent activities of the death receptors CD95, TRAILR1, and TRAILR2. FEBS J 2017; 284: 11311159.CrossRefGoogle ScholarPubMed
Pasello, M, Manara, MC, Scotlandi, K. CD99 at the crossroads of physiology and pathology. J Cell Commun Signal 2018; 12: 5568.CrossRefGoogle ScholarPubMed
Mishan, MA, Ahmadiankia, N, Bahrami, AR. CXCR4 and CCR7: two eligible targets in targeted cancer therapy. Cell Biol Int 2016; 40: 955967.CrossRefGoogle ScholarPubMed
Lee, JK, Mathew, SO, Vaidya, SV, Kumaresan, PR, Mathew, PA. CS1 (CRACC, CD319) induces proliferation and autocrine cytokine expression on human B lymphocytes. J Immunol 2007; 179: 46724678.CrossRefGoogle ScholarPubMed
Sutherland, DR, Anderson, L, Keeney, M, Nayar, R, Chin-Yee, I. The ISHAGE guidelines for CD34+ cell determination by flow cytometry. International Society of Hematotherapy and Graft Engineering. J Hematother 1996; 5: 213226.CrossRefGoogle ScholarPubMed
Sackstein, R. The biology of CD44 and HCELL in hematopoiesis: the ‘step 2-bypass pathway’ and other emerging perspectives. Curr Opin Hematol 2011; 18: 239248.CrossRefGoogle ScholarPubMed
Zimmermann, H, Zebisch, M, Sträter, N. Cellular function and molecular structure of ecto-nucleotidases. Purinergic Signal 2012; 8: 437502.CrossRefGoogle ScholarPubMed
Yang, J, Zhan, XZ, Malola, J, Li, ZY, Pawar, JS, Zhang, HT, Zha, ZG. The multiple roles of Thy-1 in cell differentiation and regeneration. Differentiation 2020; 113: 3848.CrossRefGoogle ScholarPubMed
Li, Z. CD133: a stem cell biomarker and beyond. Exp Hematol Oncol 2013; 2: 17.CrossRefGoogle ScholarPubMed
Muramatsu, T, Muramatsu, H. Carbohydrate antigens expressed on stem cells and early embryonic cells. Glycoconj J 2004; 21: 4145.CrossRefGoogle ScholarPubMed
Yamasaki, S. Clec12a: quieting the dead. Immunity 2014; 40: 309311.CrossRefGoogle ScholarPubMed
Miettinen, M, Lasota, J. KIT (CD117): a review on expression in normal and neoplastic tissues, and mutations and their clinicopathologic correlation. Appl Immunohistochem Mol Morphol 2005; 13: 205220.CrossRefGoogle ScholarPubMed
Kelm, S, Schauer, R, Crocker, PR. The Sialoadhesins: a family of sialic acid-dependent cellular recognition molecules within the immunoglobulin superfamily. Glycoconj J 1996; 13: 913926.CrossRefGoogle ScholarPubMed
Mina-Osorio, P. The moonlighting enzyme CD13: old and new functions to target. Trends Mol Med 2008; 14: 361371.CrossRefGoogle ScholarPubMed
Gahmberg, CG, Tolvanen, M, Kotovuori, P. Leukocyte adhesion: structure and function of human leukocyte beta2-integrins and their cellular ligands. Eur J Biochem 1997; 245: 215232.CrossRefGoogle ScholarPubMed
Tamm, A, Schmidt, RE. IgG binding sites on human Fc gamma receptors. Int Rev Immunol 1997; 16: 5785.CrossRefGoogle ScholarPubMed
Davis, BH, Olsen, SH, Ahmad, E, Bigelow, NC. Neutrophil CD64 is an improved indicator of infection or sepsis in emergency department patients. Arch Pathol Lab Med 2006; 130: 654661.CrossRefGoogle ScholarPubMed
Wong, KL, Yeap, WH, Tai, JJ, Ong, SM, Dang, TM, Wong, SC. The three human monocyte subsets: implications for health and disease. Immunol Res 2012; 53: 4157.CrossRefGoogle ScholarPubMed
Borrego, F. The CD300 molecules: an emerging family of regulators of the immune system. Blood 2013; 121: 19511960.CrossRefGoogle ScholarPubMed
Zanoni, I, Ostuni, R, Marek, LR, Barresi, S, Barbalat, R, Barton, GM, Granucci, F, Kagan, JC. CD14 controls the LPS-induced endocytosis of Toll-like receptor 4. Cell 2011; 147: 868880.CrossRefGoogle ScholarPubMed
Chistiakov, DA, Killingsworth, MC, Myasoedova, VA, Orekhov, AN, Bobryshev, YV. CD68/macrosialin: not just a histochemical marker. Lab Invest 2017; 97: 413.CrossRefGoogle ScholarPubMed
Nielsen, MJ, Møller, HJ, Moestrup, SK. Hemoglobin and heme scavenger receptors. Antioxid Redox Signal 2010; 12: 261273.CrossRefGoogle ScholarPubMed
Kowal, K, Silver, R, Sławińska, E, Bielecki, M, Chyczewski, L, Kowal-Bielecka, O. CD163 and its role in inflammation. Folia Histochem Cytobiol 2011; 49: 365374.CrossRefGoogle ScholarPubMed
Hofer, TP, van de Loosdrecht, AA, Stahl-Hennig, C, Cassatella, MA, Ziegler-Heitbrock, L. 6-Sulfo LacNAc (Slan) as a marker for non-classical monocytes. Front Immunol 2019; 10: 2052.CrossRefGoogle ScholarPubMed
Solary, E, Wagner-Ballon, O, Selimoglu-Buet, D. Incorporating flow cytometry and next-generation sequencing in the diagnosis of CMML: are we ready for prime? Best Pract Res Clin Haematol 2020; 33: 101134.CrossRefGoogle ScholarPubMed
Tetteroo, P, Geurts van Kessel, AD. Expression of CD15 (FAL) on myeloid cells and chromosomal localization of the gene. Histochem J 1992; 24: 777782.CrossRefGoogle ScholarPubMed
Ayre, DC, Pallegar, NK, Fairbridge, NA, Canuti, M, Lang, AS, Christian, SL. Analysis of the structure, evolution, and expression of CD24, an important regulator of cell fate. Gene 2016; 590: 324337.CrossRefGoogle ScholarPubMed
Ravandi, F, O’Brien, S. Alemtuzumab. Expert Rev Anticancer Ther 2005; 5: 3951.CrossRefGoogle ScholarPubMed
Noguchi, M, Sato, N, Sugimori, H, Mori, K, Oshimi, K. A minor E-selectin ligand, CD65, is critical for extravascular infiltration of acute myeloid leukemia cells. Leuk Res 2001; 25: 847853.CrossRefGoogle ScholarPubMed
Kuroki, M, Abe, H, Imakiirei, T, et al. Identification and comparison of residues critical for cell-adhesion activities of two neutrophil CD66 antigens, CEACAM6 and CEACAM8. J Leukoc Biol 2001; 70: 543550.CrossRefGoogle ScholarPubMed
Valent, P. Immunophenotypic characterization of human basophils and mast cells. Chem Immunol 1995; 61: 3448.Google ScholarPubMed
Testa, U, Pelosi, E, Frankel, A. CD 123 is a membrane biomarker and a therapeutic target in hematologic malignancies. Biomark Res 2014; 2: 4.CrossRefGoogle Scholar
Dzionek, A, Fuchs, A, Schmidt, P, et al. BDCA-2, BDCA-3, and BDCA-4: three markers for distinct subsets of dendritic cells in human peripheral blood. J Immunol 2000; 165: 60376046.CrossRefGoogle ScholarPubMed
Aisen, P. Transferrin receptor 1. Int J Biochem Cell Biol 2004; 36: 21372143.CrossRefGoogle ScholarPubMed
Nassiri, F, Cusimano, MD, Scheithauer, BW, et al. Endoglin (CD105): a review of its role in angiogenesis and tumor diagnosis, progression and therapy. Anticancer Res 2011; 31:22832290.Google ScholarPubMed
Cartron, JP, Rahuel, C. Human erythrocyte glycophorins: protein and gene structure analyses. Transfus Med Rev 1992; 6: 6392.CrossRefGoogle ScholarPubMed
Matassi, G, Chérif-Zahar, B, Raynal, V, Rouger, P, Cartron, JP. Organization of the human RH50A gene (RHAG) and evolution of base composition of the RH gene family. Genomics 1998; 47: 286293.CrossRefGoogle ScholarPubMed
Bennett, JS. Regulation of integrins in platelets. Biopolymers 2015; 104: 323333.CrossRefGoogle ScholarPubMed
Gardiner, EE, Andrews, RK. Structure and function of platelet receptors initiating blood clotting. Adv Exp Med Biol 2014; 844: 263275.CrossRefGoogle ScholarPubMed
Wang, K, Wei, G, Liu, D. CD19: a biomarker for B cell development, lymphoma diagnosis and therapy. Exp Hematol Oncol 2012; 1: 36.CrossRefGoogle ScholarPubMed
Fuentes-Pananá, EM, Bannish, G, Karnell, FG, Treml, JF, Monroe, JG. Analysis of the individual contributions of Igalpha (CD79a)- and Igbeta (CD79b)-mediated tonic signaling for bone marrow B cell development and peripheral B cell maturation. J Immunol 2006; 177: 79137922.CrossRefGoogle ScholarPubMed
Johnson, RC, Ma, L, Cherry, AM, Arber, DA, George, TI. B-cell transcription factor expression and immunoglobulin gene rearrangement frequency in acute myeloid leukemia with t(8;21)(q22;q22). Am J Clin Pathol 2013; 140: 355362.CrossRefGoogle Scholar
Riley, JK, Sliwkowski, MX. CD20: a gene in search of a function. Semin Oncol 2000; 27: 1724.Google ScholarPubMed
Hannan, JP. The structure-function relationships of complement receptor type 2 (CR2; CD21). Curr Protein Pept Sci 2016; 17: 463487.CrossRefGoogle ScholarPubMed
Sato, S, Tuscano, JM, Inaoki, M, Tedder, TF. CD22 negatively and positively regulates signal transduction through the B lymphocyte antigen receptor. Semin Immunol 1998; 10: 287297.CrossRefGoogle ScholarPubMed
Bonnefoy, JY, Lecoanet-Henchoz, S, Gauchat, JF, et al. Structure and functions of CD23. Int Rev Immunol 1997; 16: 113128.CrossRefGoogle ScholarPubMed
Charrin, S, Jouannet, S, Boucheix, C, Rubinstein, E. Tetraspanins at a glance. J Cell Sci 2014; 127: 36413648.Google ScholarPubMed
Bernfield, M, Götte, M, Park, PW, et al. Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem 1999; 68: 729777.CrossRefGoogle ScholarPubMed
Skrzypczynska, KM, Zhu, JW, Weiss, A. Positive regulation of lyn kinase by CD148 is required for B cell receptor signaling in B1 but not B2 B Cells. Immunity; 45 (2016):12321244.CrossRefGoogle Scholar
Tai, YT, Acharya, C, An, G, Moschetta, M, Zhong, MY, Feng, X, et al. APRIL and BCMA promote human multiple myeloma growth and immunosuppression in the bone marrow microenvironment. Blood 2016; 127: 32253236.CrossRefGoogle ScholarPubMed
Barral, DC, Brenner, MB. CD1 antigen presentation: how it works. Nat Rev Immunol 2007; 7: 929941.CrossRefGoogle ScholarPubMed
Sayre, PH, Reinherz, EL. Structure and function of the erythrocyte receptor CD2 on human T lymphocytes: a review. Scand J Rheumatol Suppl 1988; 76: 131144.CrossRefGoogle Scholar
Wucherpfennig, KW. The first structures of T cell receptors bound to peptide-MHC. J Immunol 2010; 185: 63916393.CrossRefGoogle ScholarPubMed
Call, ME, Wucherpfennig, KW, Chou, JJ. The structural basis for intramembrane assembly of an activating immunoreceptor complex. Nat Immunol 2010; 11: 10231029.CrossRefGoogle ScholarPubMed
Leahy, DJ. A structural view of CD4 and CD8. FASEB J 1995; 9: 1725.CrossRefGoogle ScholarPubMed
Tabbekh, M, Mokrani-Hammani, M, Bismuth, G, Mami-Chouaib, F. T-cell modulatory properties of CD5 and its role in antitumor immune responses. Oncoimmunology 2013; 2: e22841.CrossRefGoogle ScholarPubMed
Ware, RE, Scearce, RM, Dietz, MA, Starmer, CF, Palker, TJ, Haynes, BF. Characterization of the surface topography and putative tertiary structure of the human CD7 molecule. J Immunol 1989; 143: 36323640.CrossRefGoogle ScholarPubMed
Shipkova, M, Wieland, E. Surface markers of lymphocyte activation and markers of cell proliferation. Clin Chim Acta 2012; 413: 13381349.CrossRefGoogle ScholarPubMed
Metzemaekers, M, Van Damme, J, Mortier, A, Proost, P. Regulation of chemokine activity: a focus on the role of dipeptidyl peptidase IV/CD26. Front Immunol 2016; 7: 483.CrossRefGoogle ScholarPubMed
Liu, W, Maben, Z, Wang, C, Lindquist, KC, Li, M, Rayannavar, V, et al. Structural delineation and phase-dependent activation of the costimulatory CD27:CD70 complex. J Biol Chem 2021; 297: 101102.CrossRefGoogle ScholarPubMed
Vinay, DS, Kwon, BS. 4-1BB (CD137), an inducible costimulatory receptor, as a specific target for cancer therapy. BMB Rep 2014; 47: 122129.CrossRefGoogle ScholarPubMed
Lingel, H, Brunner-Weinzierl, MC. CTLA-4 (CD152): a versatile receptor for immune-based therapy. Semin Immunol 2019; 42: 101298.CrossRefGoogle ScholarPubMed
Romero, X, Zapater, N, Calvo, M, et al. CD229 (Ly9) lymphocyte cell surface receptor interacts homophilically through its N-terminal domain and relocalizes to the immunological synapse. J Immunol 2005; 174: 70337042.CrossRefGoogle Scholar
Acosta, YY, Zafra, MP, Ojeda, G, et al. Biased binding of class IA phosphatidyl inositol 3-kinase subunits to inducible costimulator (CD278). Cell Mol Life Sci 2011; 68: 30653079.CrossRefGoogle ScholarPubMed
Bardhan, K, Anagnostou, T, Boussiotis, VA. The PD1:PD-L1/2 pathway from discovery to clinical implementation. Front Immunol 2016; 7: 550.CrossRefGoogle ScholarPubMed
Smith, SL, Kennedy, PR, Stacey, KB, et al. Diversity of peripheral blood human NK cells identified by single-cell RNA sequencing. Blood Adv 2020; 4: 13881406.CrossRefGoogle ScholarPubMed
Kared, H, Martelli, S, Ng, TP, Pender, SL, Larbi, A. CD57 in human natural killer cells and T-lymphocytes. Cancer Immunol Immunother 2016; 65: 441452.CrossRefGoogle Scholar
Abel, AM, Yang, C, Thakar, MS, Malarkannan, S. Natural Killer cells: development, maturation, and clinical utilization. Front Immunol 2018; 9: 1869.CrossRefGoogle ScholarPubMed
Siemaszko, J, Marzec-Przyszlak, A, Bogunia-Kubik, K. NKG2D Natural Killer cell receptor: a short description and potential clinical applications. Cells 2021; 10: 1420.CrossRefGoogle Scholar
Campbell, KS, Purdy, AK. Structure/function of human killer cell immunoglobulin-like receptors: lessons from polymorphisms, evolution, crystal structures and mutations. Immunology 2011; 132: 315325.CrossRefGoogle ScholarPubMed
Le Bouteiller, P, Tabiasco, J, Polgar, B, et al. CD160: a unique activating NK cell receptor. Immunol Lett 2011; 138: 9396.CrossRefGoogle ScholarPubMed
Oumeslakht, L, Aziz, AI, Bensussan, A, Ben Mkaddem, S. CD160 receptor in CLL: current state and future avenues. Front Immunol. 2022; 13: 1028013.CrossRefGoogle ScholarPubMed
Llibre, A, Klenerman, P, Willberg, CB. Multi-functional lectin-like transcript-1: a new player in human immune regulation. Immunol Lett 2016; 177: 6269.CrossRefGoogle ScholarPubMed
Shipkova, M, Wieland, E. Surface markers of lymphocyte activation and markers of cell proliferation. Clin Chim Acta 2012; 413: 13381349.CrossRefGoogle ScholarPubMed
Ridger, VC, Wagner, BE, Wallace, WA, Hellewell, PG. Differential effects of CD18, CD29, and CD49 integrin subunit inhibition on neutrophil migration in pulmonary inflammation. J Immunol 2001; 166: 34843490.CrossRefGoogle ScholarPubMed
Lawson, C, Wolf, S. ICAM-1 signaling in endothelial cells. Pharmacol Rep 2009; 61: 2232.CrossRefGoogle ScholarPubMed
Wang, JH, Smolyar, A, Tan, K, et al. Structure of a heterophilic adhesion complex between the human CD2 and CD58 (LFA-3) counterreceptors. Cell 1999; 97: 791803.CrossRefGoogle ScholarPubMed
Wipfler, D, Srinivasan, GV, Sadick, H, et al. Differentially regulated expression of 9-O-acetyl GD3 (CD60b) and 7-O-acetyl-GD3 (CD60c) during differentiation and maturation of human T and B lymphocytes. Glycobiology 2011; 21: 11611172.CrossRefGoogle ScholarPubMed
Verstraete, K, Vandriessche, G, Januar, M, et al. Structural insights into the extracellular assembly of the hematopoietic Flt3 signaling complex. Blood 2011; 118: 6068.CrossRefGoogle ScholarPubMed
Divanovic, S, Trompette, A, Petiniot, LK, et al. Regulation of TLR4 signaling and the host interface with pathogens and danger: the role of RP105. J Leukoc Biol 2007; 82: 265271.CrossRefGoogle ScholarPubMed
Hatherley, D, Lea, SM, Johnson, S, Barclay, AN. Structures of CD200/CD200 receptor family and implications for topology, regulation, and evolution. Structure 2013; 21: 820832.CrossRefGoogle ScholarPubMed
Evans, DT, Serra-Moreno, R, Singh, RK, Guatelli, JC. BST-2/tetherin: a new component of the innate immune response to enveloped viruses. Trends Microbiol 2010; 18: 388396.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×