Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-31T23:57:59.751Z Has data issue: false hasContentIssue false

Chapter 14 - Future Applications of Flow Cytometry and Related Techniques

Published online by Cambridge University Press:  30 January 2025

Anna Porwit
Affiliation:
Lunds Universitet, Sweden
Marie Christine Béné
Affiliation:
Université de Nantes, France
Get access

Summary

Although the fundamental idea of having cells focalised to be ’seen’ one by one by a detection system remains unchanged, flow cytometry technologies evolve. This chapter provides an overview of recent progress in this evolution. From a technical point of view, cameras can provide images of each of these cells together with their fluorescent properties, or the whole spectrum of emitted light can be collected. Markers coupled to heavy metals allow to detect each cell immunophenotype by mass spectrometry. On the analysis side, artificial intelligence and machine learning are developing for unsupervised analysis, saving time before a much better supervision of small populations.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Fulwyler, MJ. Electronic separation of biological cells by volume. Science 1965; 150: 910911.CrossRefGoogle ScholarPubMed
Hulett, HR, Bonner, WA, Barrett, J, Herzenberg, LA. Automated separation of mammalian cells as a function of intracellular fluorescence. Science 1969; 166: 747749.CrossRefGoogle ScholarPubMed
Büchner, T, Dittrich, W, Göhde, W. Impulse cytophotometry of blood cells and bone marrow cells. Verh Dtsch Ges Inn Med 1971; 77: 416418.Google ScholarPubMed
Basiji, D, O’Gorman, MR. Imaging flow cytometry. J Immunol Methods 2015; 423: 12.CrossRefGoogle ScholarPubMed
Basiji, DA. Principles of Amnis imaging flow cytometry. Methods Mol Biol 2016; 1389: 1321.CrossRefGoogle ScholarPubMed
Phanse, Y, Ramer-Tait, AE, Friend, SL, et al. Analyzing cellular internalization of nanoparticles and bacteria by multi-spectral imaging flow cytometry. J Vis Exp 2012; 64: e3884.Google Scholar
Mirabelli, P, Scalia, G, Pascariello, C, et al. ImageStream promyelocytic leukemia protein immunolocalization: in search of promyelocytic leukemia cells. Cytometry A 2012; 81: 232237.CrossRefGoogle ScholarPubMed
Rosenberg, CA, Bill, M, Rodrigues, MA, et al. Exploring dyserythropoiesis in patients with myelodysplastic syndrome by imaging flow cytometry and machine-learning assisted morphometrics. Cytometry B Clin Cytom 2021; 100: 554567.CrossRefGoogle ScholarPubMed
McLemore, AF, Hou, HA, Meyer, BS, et al. Somatic gene mutations expose cytoplasmic DNA to co-opt the cGAS/STING/NLRP3 axis in myelodysplastic syndromes. JCI Insight 2022; 7: e159430.CrossRefGoogle ScholarPubMed
Herbig, M, Jacobi, A, Wobus, M, et al. Machine learning assisted real-time deformability cytometry of CD34+ cells allows to identify patients with myelodysplastic syndromes. Sci Rep 2022; 12: 870.CrossRefGoogle ScholarPubMed
Nolan, JP. The evolution of spectral flow cytometry. Cytometry A 2022; 101: 812817.CrossRefGoogle ScholarPubMed
Brestoff, JR. Full spectrum flow cytometry in the clinical laboratory. Int J Lab Hematol 2023; 45: 4449.CrossRefGoogle ScholarPubMed
Ferrer-Font, L, Small, SJ, Lewer, B, et al. Panel optimization for high-dimensional immunophenotyping assays using full-spectrum flow cytometry. Curr Protoc 2021; 1: e222.CrossRefGoogle ScholarPubMed
Zacharias, ZR, Houtman, JCD. OMIP-099: 31-color spectral flow cytometry panel to investigate the steady-state phenotype of human T cells. Cytometry A 2024; 105: 1015.CrossRefGoogle ScholarPubMed
Spurgeon, BEJ, Frelinger, AL 3rd. OMIP-097: high-parameter phenotyping of human platelets by spectral flow cytometry. Cytometry A 2023; 103: 935940.CrossRefGoogle ScholarPubMed
Dott, T, Culina, S, Chemali, R, et al. Standardized high-dimensional spectral cytometry protocol and panels for whole blood immune phenotyping in clinical and translational studies. Cytometry A 2023; Online ahead of print.CrossRefGoogle Scholar
Nolan, GP. Flow cytometry in the post fluorescence era. Best Pract Res Clin Haematol 2011; 24: 505508.CrossRefGoogle ScholarPubMed
Irish, JM, Doxie, DB. High-dimensional single-cell cancer biology. Curr Top Microbiol Immunol 2014; 377: 121.Google ScholarPubMed
Astle, JM, Huang, H. Mass cytometry in hematologic malignancies: research highlights and potential clinical applications. Front Oncol 2021; 11: 704464.CrossRefGoogle ScholarPubMed
Newell, EW, Cheng, Y. Mass cytometry: blessed with the curse of dimensionality. Nat Immunol 2016; 17: 890895.CrossRefGoogle ScholarPubMed
Bendall, SC, Simonds, EF, Qiu, P, et al. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 2011; 332: 687696.CrossRefGoogle ScholarPubMed
Becher, B, Schlitzer, A, Chen, J, et al. High-dimensional analysis of the murine myeloid cell system. Nat Immunol 2014; 15: 11811189.CrossRefGoogle ScholarPubMed
Knapp, DJ, Hammond, CA, Aghaeepour, N, et al. Distinct signaling programs control human hematopoietic stem cell survival and proliferation. Blood 2017; 129: 307318.CrossRefGoogle ScholarPubMed
Newell, EW, Yun, LL. Mass cytometry analysis of human T cell phenotype and function. Methods Mol Biol 2014; 1193: 5568.CrossRefGoogle Scholar
Fisher, DAC, Malkova, O, Engle, EK, et al. Mass cytometry analysis reveals hyperactive NF Kappa B signaling in myelofibrosis and secondary acute myeloid leukemia. Leukemia 2017; 31: 19621974.CrossRefGoogle ScholarPubMed
Bodenmiller, B, Zunder, ER, Finck, R, et al. Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators. Nat Biotechnol 2012; 30: 858867.CrossRefGoogle ScholarPubMed
Rosen, DB, Minden, MD, Kornblau, SM, et al. Functional characterization of FLT3 receptor signaling deregulation in acute myeloid leukemia by single cell network profiling (SCNP). PLoS ONE 2010; 5: e13543.CrossRefGoogle ScholarPubMed
Tan, T, Gray, DHD, Teh, CE. Single-cell profiling of the intrinsic apoptotic pathway by mass cytometry (CyTOF). Methods Mol Biol 2022; 2543: 8397.CrossRefGoogle ScholarPubMed
Faucher, JL, Lacronique-Gazaille, C, Frébet, E, et al. ‘6 markers/5 colors’ extended white blood cell differential by flow cytometry. Cytometry A 2007; 71: 934944.CrossRefGoogle ScholarPubMed
Allou, K, Vial, JP, Béné, MC, Lacombe, F. The routine leukocyte differential flow cytometry HematoFlow™ method: a new flagging system for automatic validation. Cytometry B Clin Cytom 2015; 88: 375384.CrossRefGoogle Scholar
Park, D, Chang, J, Kahng, J, et al. Development of a novel flow cytometry-based system for white blood cell differential counts: 10-color LeukoDiff. Ann Lab Med 2019; 39: 141149.CrossRefGoogle ScholarPubMed
Pedersen, CB, Olsen, LR. Algorithmic clustering of single-cell cytometry data-how unsupervised are these analyses really? Cytometry A 2020; 97: 219221.CrossRefGoogle Scholar
Lucchesi, S, Furini, S, Medaglini, D, Ciabattini, A. From bivariate to multivariate analysis of cytometric data: overview of computational methods and their application in vaccination studies. Vaccines (Basel). 2020; 8: 138.CrossRefGoogle ScholarPubMed
Rybakowska, P, Alarcón-Riquelme, ME, Marañón, C. Key steps and methods in the experimental design and data analysis of highly multi-parametric flow and mass cytometry. Comput Struct Biotechnol J 2020; 18: 874886.CrossRefGoogle ScholarPubMed
Duetz, C, Bachas, C, Westers, TM, van de Loosdrecht, AA. Computational analysis of flow cytometry data in hematological malignancies: future clinical practice? Curr Opin Oncol 2020; 32: 162169.CrossRefGoogle ScholarPubMed
Liu, P, Liu, S, Fang, Y, et al. Recent advances in computer-assisted algorithms for cell subtype identification of cytometry data. Front Cell Dev Biol 2020; 8: 234.CrossRefGoogle ScholarPubMed
van der Maaten, L Hinton, G. Visualizing data using t-SNE. J Mach Learn Res 2008; 9: 25792605.Google Scholar
Amir, el-AD, Davis, KL, Tadmor, MD, et al. viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat Biotechnol 2013; 31: 545552.CrossRefGoogle ScholarPubMed
Shekhar, K, Brodin, P, Davis, MM, Chakraborty, AK. Automatic classification of cellular expression by nonlinear stochastic embedding (ACCENSE). Proc Natl Acad Sci USA 2014; 111: 202207.CrossRefGoogle ScholarPubMed
Linderman, GC, Rachh, M, Hoskins, JG, Steinerberger, S, Kluger, Y. Fast interpolation-based t-SNE for improved visualization of single-cell RNA-seq data. Nat Methods 2019; 16: 243245.CrossRefGoogle ScholarPubMed
Becht, E, McInnes, L, Healy, J, et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat Biotechnol 2019; 37: 3844.CrossRefGoogle Scholar
Kobak, D, Linderman, GC. Initialization is critical for preserving global data structure in both t-SNE and UMAP. Nat Biotechnol 2021; 39: 156157.CrossRefGoogle ScholarPubMed
Qiu, P, Simonds, EF, Bendall, SC, et al. Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE. Nat Biotechnol 2011; 29: 886–91.CrossRefGoogle ScholarPubMed
Levine, JH, Simonds, EF, Bendall, SC, et al. Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis. Cell 2015; 162: 184197.CrossRefGoogle ScholarPubMed
Bruggner, RV, Bodenmiller, B, Dill, DL, Tibshirani, RJ, Nolan, GP. Automated identification of stratifying signatures in cellular subpopulations. Proc Natl Acad Sci USA 2014; 111: E2770E2777.CrossRefGoogle ScholarPubMed
Van Gassen, S, Callebaut, B, Van Helden, MJ, et al. FlowSOM: using self-organizing maps for visualization and interpretation of cytometry data. Cytometry A 2015; 87: 636645.CrossRefGoogle ScholarPubMed
Quintelier, K, Couckuyt, A, Emmaneel, A, Aerts, J, Saeys, Y, Van Gassen, S. Analyzing high-dimensional cytometry data using FlowSOM. Nat Protoc 2021; 16: 37753801.CrossRefGoogle ScholarPubMed
Weber, LM, Robinson, MD. Comparison of clustering methods for high-dimensional single-cell flow and mass cytometry data. Cytometry A 2016; 89: 10841096.CrossRefGoogle ScholarPubMed
Liu, X, Song, W, Wong, BY, et al. A comparison framework and guideline of clustering methods for mass cytometry data. Genome Biol 2019; 20: 297.CrossRefGoogle ScholarPubMed
Todorov, H, Saeys, Y. Computational approaches for high-throughput single-cell data analysis. FEBS J. 2019; 286: 14511467.CrossRefGoogle ScholarPubMed
Van Gassen, S, Gaudilliere, B, Angst, MS, Saeys, Y, Aghaeepour, N. CytoNorm: a normalization algorithm for cytometry data. Cytometry A 2020; 97: 268278.CrossRefGoogle ScholarPubMed
Lacombe, F, Bernal, E, Bloxham, D, et al. Harmonemia: a universal strategy for flow cytometry immunophenotyping – a European LeukemiaNet WP10 study. Leukemia 2016; 30: 17691772.CrossRefGoogle ScholarPubMed
Lacombe, F, Campos, L, Allou, K, et al. Prognostic value of multicenter flow cytometry harmonized assessment of minimal residual disease in acute myeloblastic leukemia. Hematol Oncol. 2018; 36: 422428.CrossRefGoogle ScholarPubMed
Fišer, K, Sieger, T, Schumich, A, Wood, B, Irving, J, Mejstříková, E, Dworzak, MN. Detection and monitoring of normal and leukemic cell populations with hierarchical clustering of flow cytometry data. Cytometry A 2012; 81: 2534.CrossRefGoogle ScholarPubMed
Reiter, M, Diem, M, Schumich, A, et al.; International Berlin-Frankfurt-Münster (iBFM)-FLOW-Network and the AutoFLOW Consortium. Automated flow cytometric MRD assessment in childhood acute B-lymphoblastic leukemia using supervised machine learning. Cytometry A 2019; 95: 966975.CrossRefGoogle ScholarPubMed
Weijler, L, Kowarsch, F, Wödlinger, M, et al. UMAP based anomaly detection for minimal residual disease quantification within acute myeloid leukemia. Cancers (Basel) 2022; 14: 898.CrossRefGoogle ScholarPubMed
Duetz, C, Van Gassen, S, Westers, TM, et al. Computational flow cytometry as a diagnostic tool in suspected-myelodysplastic syndromes. Cytometry A 2021; 99: 814824.CrossRefGoogle ScholarPubMed
Clichet, V, Lebon, D, Chapuis, N, et al. Artificial intelligence to empower diagnosis of myelodysplastic syndromes by multiparametric flow cytometry. Haematologica 2023; 108: 24352443.Google ScholarPubMed
Monaghan, SA, Li, JL, Liu, YC, et al. A machine learning approach to the classification of acute leukemias and distinction from nonneoplastic cytopenias using flow cytometry data. Am J Clin Pathol 2022; 157: 546553.CrossRefGoogle Scholar
Simonson, PD, Wu, Y, Wu, D, Fromm, JR, Lee, AY. De novo identification and visualization of important cell populations for classic Hodgkin lymphoma using flow cytometry and machine learning. Am J Clin Pathol 2021; 156: 10921102.CrossRefGoogle ScholarPubMed
Lacombe, F, Lechevalier, N, Vial, JP, Béné, MC. An R-derived FlowSOM process to analyze unsupervised clustering of normal and malignant human bone marrow classical flow cytometry data. Cytometry A 2019; 95: 11911197.CrossRefGoogle ScholarPubMed
Béné, MC, Lacombe, F, Porwit, A. Unsupervised flow cytometry analysis in hematological malignancies: a new paradigm. Int J Lab Hematol 2021; 43: 54-64.CrossRefGoogle ScholarPubMed
Lacombe, F, Dupont, B, Lechevalier, N, Vial, JP, Béné, MC. Innovation in flow cytometry analysis: a new paradigm delineating normal or diseased bone marrow subsets through machine learning. Hemasphere 2019; 3: e173.CrossRefGoogle ScholarPubMed
Béné, MC, Axler, O, Violidaki, D, Lacombe, F, Ehinger, M, Porwit, A. Definition of erythroid differentiation subsets in normal human bone marrow using FlowSOM unsupervised cluster analysis of flow cytometry data. Hemasphere 2020; 5: e512.CrossRefGoogle ScholarPubMed
Porwit, A, Violidaki, D, Axler, O, Lacombe, F, Ehinger, M, Béné, MC. Unsupervised cluster analysis and subset characterization of abnormal erythropoiesis using the bioinformatic Flow-Self Organizing Maps algorithm. Cytometry B Clin Cytom 2022; 102: 134142.CrossRefGoogle ScholarPubMed
Porwit, A, Béné, MC. The plasmacytoid dendritic cell CD123+ compartment in acute leukemia with or without RUNX1 mutation: high inter-patient variability disclosed by immunophenotypic unsupervised analysis and clustering. Hemato 2021; 2: 572585.CrossRefGoogle Scholar
Vial, JP, Lechevalier, N, Lacombe, F, et al. Unsupervised flow cytometry analysis allows for an accurate identification of minimal residual disease assessment in acute myeloid leukemia. Cancers (Basel) 2021; 13: 629.CrossRefGoogle ScholarPubMed
Costa, ES, Pedreira, CE, Barrena, S, et al. Automated pattern-guided principal component analysis vs expert-based immunophenotypic classification of B-cell chronic lymphoproliferative disorders: a step forward in the standardization of clinical immunophenotyping. Leukemia 2010; 24: 19271933.CrossRefGoogle ScholarPubMed
DiGiuseppe, JA, Tadmor, MD, Pe’er, D. Detection of minimal residual disease in B lymphoblastic leukemia using viSNE. Cytometry B Clin Cytom 2015; 88: 294304.CrossRefGoogle Scholar
Beyrend, G, Stam, K, Höllt, T, Ossendorp, F, Arens, R. Cytofast: a workflow for visual and quantitative analysis of flow and mass cytometry data to discover immune signatures and correlations. Comput Struct Biotechnol J 2018; 16: 435442.CrossRefGoogle ScholarPubMed
Westers, TM, Saft, L, van der Velden, VHJ. A series of case studies illustrating the role of flow cytometry in the diagnostic work-up of myelodysplastic syndromes. Cytometry B Clin Cytom 2023; 104: 8797.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×