Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T13:23:38.279Z Has data issue: false hasContentIssue false

9 - Time Dependent Behavior

Published online by Cambridge University Press:  15 September 2022

Catalin R. Picu
Affiliation:
Rensselaer Polytechnic Institute, New York
Get access

Summary

Many Network materials exhibit time-dependent behavior. This chapter begins with a review of essential results from viscoelasticity. Further, the mechanisms leading to network scale time dependence are analyzed in three separate sections. The influence of the fiber material time dependence on the network behavior is discussed first. In networks embedded in a fluidic matrix, the migration of the fluid in and out of the network may produce time dependent mechanical behavior. The basic notions of poroelasticity are presented and the conditions under which this mechanism becomes important for the network-scale mechanics are outlined. Time dependence is also produced by nonbonded fiber interactions. This is an essential component of the mechanics of thermal molecular networks and a section is devoted to this topic. In networks in which crosslinks are transient, such as ionomers and vitrimers, material behavior is strongly time dependent, and a section is dedicated to this issue. Multiple mechanisms act concurrently in applications and identifying their individual contributions is not always easy. A discussion aimed to assist the interpretation of experimental data is included.

Type
Chapter
Information
Network Materials
Structure and Properties
, pp. 338 - 369
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abhilash, A. S., Purohit, P. K. & Joshi, S. P. (2012). Stochastic rate-dependent elasticity and failure of soft fibrous networks. Soft Matt. 8, 30043016.CrossRefGoogle Scholar
Ahmadi, M., Hawke, L. G. D., Goldansaz, H. & van Ruymbeke, E. (2015). Dynamics of entangled linear supramolecular chains with sticky side groups: Influence of hindered fluctuations. Macromolecules 48, 73007310.CrossRefGoogle Scholar
Alava, M. & Niskanen, K. (2006). The physics of paper. Rep. Prog. Phys. 69, 669723.CrossRefGoogle Scholar
Amjad, S. N. & Picu, R. C. (2022). Stress relaxation in network materials: the contribution of the network. Soft. Matter 18, 446454.Google Scholar
Andersson, O. & Sjoberg, L. (1953). Tensile studies of paper at different rates of elongation. Svensk Pappertid. 56, 615624.Google Scholar
Annable, T., Buscall, R., Ettelaire, R., & Whittlestone, D. (1993). The rheology of solutions of associating polymers: Comparison of experimental behavior with transient network theory. J. Rheol. 37, 695726.Google Scholar
Babaei, B., Davarian, A., Pryse, K. M., Elson, E. L. & Genin, G. M. (2015). Efficient and optimized identification of generalized Maxwell viscoelastic relaxation spectra. J. Mech. Beh. Biomed. Mater. 55, 3241.CrossRefGoogle ScholarPubMed
Baxandall, L. G. (1989). Dynamics of reversibly cross-linked chains. Macromolecules 22, 19821988.CrossRefGoogle Scholar
Bernstein, B., Kearsley, E. A. & Zapas, L. J. (1963). A study of stress relaxations with finite strain. Trans. Soc. Rheol. 7, 391410.CrossRefGoogle Scholar
Berret, J. F., Sereo, Y., Winkelman, B., et al. (2001). Nonlinear rheology of telechelic polymer networks. J. Rheol. 45, 477492.Google Scholar
Biot, M. A. (1941). General theory of three-dimensional consolidation. J. Appl. Phys. 12, 155164.Google Scholar
Bird, R. B., Armstrong, R. C. & Hassager, O. (1987). Dynamics of polymeric liquids. Vol. 1: Fluid mechanics. Wiley, New York.Google Scholar
Brezinski, J. P. (1956). The creep properties of paper. Tappi J. 39, 116128.CrossRefGoogle Scholar
Broedersz, C. P., Depken, M., Yao, N. Y., et al. (2010). Cross-link-governed dynamics of biopolymer networks. Phys. Rev. Lett. 105, 238101.Google Scholar
Buhan, P. D., Chateau, X. & Dormieux, L. (1998). The constitutive equations of finite strain poroelasticity in the light of micro-macro approach. Euro. J. Mech. A 17, 909921.Google Scholar
Chen, Q., Tudryn, G. J. & Colby, R. H. (2013). Ionomer dynamics and the sticky Rouse model. J. Rheol. 57, 14411462.Google Scholar
Christensen, R. M. (1971). Theory of viscoelasticity. Academic Press, New York.Google Scholar
DeMaio, A. & Patterson, T. (2007). Rheological modeling of the tensile creep behavior of paper. J. Appl. Poly. Sci. 106, 35433554.Google Scholar
Dhume, R. Y. & Barocas, V. H. (2019). Emergent structure-dependent relaxation spectra in viscoelastic fiber networks in extension. Acta Biomater. 87, 245255.CrossRefGoogle ScholarPubMed
Dicke, R. A. & Ferry, J. D. (1966). Dynamic mechanical properties of cross-linked rubbers. III. Dicumyl peroxide vulcanizates of natural rubber. J. Phys. Chem. 70, 25942600.CrossRefGoogle Scholar
Doi, M. (1996). Introduction to polymer physics. Clarendon Press, Oxford.Google Scholar
Doi, M. & Edwards, S. (1986). The theory of polymer dynamics. Clarendon Press, Oxford.Google Scholar
Doolittle, A. K. & Doolittle, D. B. (1957). Studies in Newtonian flow. V. Further verification of the free-space viscosity equation. J. Appl. Phys. 28, 901905.CrossRefGoogle Scholar
Duling, R. R., Dupaix, R. B., Katsube, N. & Lannutti, J. (2008). Mechanical characterization of electrospun polycaprolactone (PCL): A potential scaffold for tissue engineering. J. Biomech. Eng. 130, 011006.Google Scholar
Ehret, A. E., Bircher, K., Stracuzzi, A., et al. (2017). Inverse poroelasticity as a fundamental mechanism in biomechanics and mechanobiology. Nature Comm. 8, 1002.Google Scholar
Eisenberg, A. (1971). Glass transition in ionic polymers. Macromolecules 4, 125128.Google Scholar
Ferry, J. D. (1980). Viscoelastic properties of polymers, 3rd ed. Wiley, New York.Google Scholar
Ferry, J. D., Manke, R. G., Maekawa, E., Oyanagi, Y. & Dicke, R. A. (1964). Dynamic mechanical properties of crosslinked rubbers. I. Effects of crosslink spacing in natural rubber. J. Phys. Chem. 68, 34143418.Google Scholar
Findley, W. N., Lai, J. S. & Onaran, K. (1976). Creep and relaxation of nonlinear viscoelatic materials. North-Holland, Amsterdam.Google Scholar
Fung, Y. C. (2013). Biomechanics: Mechanical properties of living tissues. Springer, New York.Google Scholar
Galli, M., Comley, K. S. C., Shean, T. A. V. & Oyen, M. L. (2009). Viscoelastic and poroelastic mechanical characterization of hydrated gels. J. Mater. Res. 24, 973979.Google Scholar
Gent, A. N. & Mars, W. V. (2013). Strength of rubber. In Science and Technology of Rubber, 4th ed., Mark, J. E., Erman, B. & Roland, M., eds. Academic Press, Amsterdam, pp. 473516.Google Scholar
Groot, R. D., Bot, A. & Agterof, W. G. M. (1996). Molecular theory of the yield behavior of a polymer gel: Application to gelatin. J. Chem. Phys. 104, 92209233.Google Scholar
Haddad, Y. M. (1995). Viscoelasticity of engineering materials. Chapman & Hall, London.CrossRefGoogle Scholar
Hu, Y. & Suo, Z. (2012). Viscoelasticity and poroelasticity in elastomeric gels. Acta Mech. Sinica 25, 441458.Google Scholar
Hu, Y., Zhao, X., Vlassak, J. J. & Suo, Z. (2010). Using indentation to characterize the poroelasticity of gels. Appl. Phys. Lett. 96, 121904.Google Scholar
Hui, C. Y. & Muralidharan, V. (2005). Gel mechanics: A comparison of the theories of Biot and Tanaka, Hocker, and Benedek. J. Chem. Phys. 123, 154905.CrossRefGoogle Scholar
Isono, Y. & Ferry, J. D. (1984). Stress relaxation and differential dynamic modulus of carbon black-filled styrene-butadiene rubber in large shearing deformations. Rubber Chem. Technol. 57, 925943.Google Scholar
Izuka, A., Winter, H. H. & Hashimoto, T. (1994). Temperature dependence of viscoelasticity of polycaprolactone critical gels. Macromolecules 27, 68836888.Google Scholar
Jubera, R., Ridruejo, A., Gonzalez, C. & Llorca, J. (2014). Mechanical behavior and deformation micromechanisms of PP nonwoven fabrics as a function of temperature and strain rate. Mech. Mater. 74, 1425.Google Scholar
Kaye, A. (1962). Non-Newtonian flow in incompressible fluids. College of Aeronautics, Cranfield, CoA Note No. 134.Google Scholar
Kim, J. S., Yoshikawa, K. & Eisenberg, A. (1994). Molecular weight dependence of the viscoelastic properties of polystyrene-based ionomers. Macromolecules 27, 63476357.Google Scholar
Komatsu, K. (2010). Mechanical strength and viscoelastic response of the periodontal ligament in relation to structure. J. Dental Biomech. 1, 118.Google Scholar
Lieleg, O., Claessens, M. M. A. E., Luan, Y. & Bausch, A. R. (2008). Transient binding and dissipation in cross-linked actin networks. Phys. Rev. Lett. 101, 108101.Google Scholar
Lin, W. C., Shull, K. R., Hui, C. Y. & Lin, Y. Y. (2007). Contact measurement of internal fluid flow within poly(n-isopropylacrylamide) gels. J. Chem. Phys. 127, 094906.Google Scholar
Mao, R., Meng, N., Tu, W. & Peijs, T. (2017). Toughening mechanisms in cellulose nanopaper. Cellulose 24, 46274639.Google Scholar
Montarnal, D., Capelot, M., Tournilhac, F. & Leibler, L. (2011). Silica-like malleable materials from permanent organic networks. Science 334, 965968.Google Scholar
Mow, V. C., Kuei, S. C., Lai, W. M. & Armstrong, C. G. (1980). Biphasic creep and stress relaxation of articular cartilage in compression: Theory and experiments. J. Biomech. Eng. 102, 7384.Google Scholar
Nabovati, A., Llewellin, E. W. & Sousa, A. C. M. (2009). A general model for the permeability of fibrous porous media based on fluid flow simulations using the lattice Boltzmann method. Composites A 40, 860869.Google Scholar
Nam, S., Hu, K. H., Butte, M. J. & Chaudhuri, O. (2016). Strain-enhanced stress relaxation impacts nonlinear elasticity in collagen gels. Proc. Nat. Acad. Sci. 113, 54925497.Google Scholar
Negi, V. & Picu, R. C. (2019). Mechanical behavior of nonwoven non-crosslinked fibrous mats with adhesion and friction. Soft Matt. 15, 59515964.Google Scholar
Nekouzadeh, A., Pryse, K. M., Elson, E. L. & Genin, G. M. (2007). A simplified approach to quasi-linear viscoelastic modeling. J. Biomech. 40, 30703078.Google Scholar
Ngai, K. L., Capaccioli, S. & Plazek, D. J. (2013). The viscoelastic behavior of rubber and dynamics of blends. In Science and Technology of Rubber, 4th ed., Mark, J. E., Erman, B. & Roland, M., eds. Academic Press, Amsterdam, pp. 193284.Google Scholar
Ngai, K. L., Plazek, D. J. & Rendell, R. W. (1997). Some examples of possible descriptions of dynamic properties of polymers by means of the coupling model. Rheol. Acta 36, 307319.Google Scholar
Oyen, M. L. (2014). Mechanical characterization of hydrogel materials. Inter. Mater. Rev. 59, 4459.Google Scholar
Patel, P. C. & Kothari, V. K. (2001). Effect of specimen size and strain rate on the tensile properties of heat-sealed and needle-punched nonwoven fabrics. Indian J. Fiber Text. Res. 26, 409413.Google Scholar
Payne, A. R. & Whittaker, R. E. (1971). Low strain dynamic properties of filled rubber. Rubber Chem. Technol. 44, 440478.CrossRefGoogle Scholar
Pellens, L., Corrales, R. G. & Mewis, J. (2004). General nonlinear rheological behavior of associative polymers. J. Rheol. 48, 379393.CrossRefGoogle Scholar
Plazek, D. J. & Chay, I. C. (1991). The evolution of the viscoelastic retardation spectrum during the development of an epoxy resin network. J. Polym. Sci. B 29, 1729.Google Scholar
Plazek, D. J. & Rosner, M. (1998). The calculation of the tear energy of elastomers from their viscoelastic behavior. Rubber Chem. Technol. 71, 679689.Google Scholar
Pryse, K. M., Nekouzadeh, A., Genin, G. M., Elson, E. L. & Zahalak, G. I. (2003). Incremental mechanics of collagen gels: New experiments and a new viscoelastic model. Ann. Biomed. Eng. 31, 12871296.Google Scholar
Roland, C. M. (2011). Viscoelastic behavior of rubbery materials. Oxford University Press, Oxford.Google Scholar
Rubinstein, M. & Colby, R. H. (2003). Polymer physics. Oxford University Press, Oxford.Google Scholar
Sarver, J. J., Robinson, P. S. & Elliott, D. M. (2003). Methods for quasi-linear viscoelastic modeling of soft tissue: application to incremental stress–relaxation experiments. J. Biomech. Eng. 125, 754758.CrossRefGoogle ScholarPubMed
Schweitzer, K. S. (1989). Microscopic theory of the dynamics of polymeric liquids: General formulation of a mode-mode coupling approach. J. Chem. Phys. 91, 58025821.Google Scholar
Serero, Y., Jacobsen, V., Berret, J. F. & May, R. (2000). Evidence of nonlinear chain stretching in the rheology of transient networks. Macromolecules 33, 18411847.Google Scholar
Shen, Z. L., Kahn, H., Ballarini, R. & Eppell, S. (2011). Viscoelastic properties of isolated collagen fibrils. Biophys. J. 100, 30083015.Google Scholar
Strange, D. G., Fletcher, T. L., Tonsomboon, K., et al. (2013). Separating poroviscoelastic deformation mechanisms in hydrogels. Appl. Phys. Lett. 102, 031913.Google Scholar
Strobl, G. R. (1996). The physics of polymers: Concepts for understanding their structure and behavior. Springer, Berlin.CrossRefGoogle Scholar
Svensson, R. B., Hassenkam, T., Hansen, P. & Magnusson, S. P. (2010). Viscoelastic behavior of discrete human collagen fibrils. J. Mech. Beh. Biomed. Mater. 3, 112115.CrossRefGoogle ScholarPubMed
Tanaka, F. (2011). Polymer physics: Applications to molecular association and thermoreversible gelation. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Tanaka, F. & Edwards, S. F. (1992a). Viscoelastic properties of physically cross-linked networks. Transient network theory. Macromolecules 25, 15161523.Google Scholar
Tanaka, F. & Edwards, S. F. (1992b). Viscoelastic properties of physically cross-linked networks. Dynamic mechanical moduli. J. Non-Newt. Fl. Mech. 43, 273288.Google Scholar
Tripathi, A., Tam, K. C. & McKinley, G. H. (2006). Rheology and dynamics of associative polymers in shear and extension: Theory and experiments. Macromolecules 39, 19811999.Google Scholar
Uesaka, T., Murakami, K. & Imamura, R. (1980). Two-dimensional linear viscoelasticity of paper. Wood Sci. Technol. 14, 131142.Google Scholar
Vaccarro, A. & Marrucci, G. (2000). A model for the nonlinear rheology of associating polymers. J. Non-Newt. Fl. Mech. 92, 261273.Google Scholar
Vernerey, F. J., Long, R. & Brighenti, R. (2017). A statistically-based continuum theory for polymers with transient networks. J. Mech. Phys. Sol. 107, 120.Google Scholar
Wagenseil, J. E., Wakatsuki, T., Okamoto, R. J., Zahalak, G. I. & Elson, E. L (2003). One-dimensional viscoelastic behavior of fibroblast populated collagen matrices. J. Biomech. Eng. 125, 719725.Google Scholar
Wang, H. W. (2000). Theory of linear poroelasticity with applications to geomechanics and hydrogeology. Princeton University Press, Princeton, NJ.Google Scholar
Weiss, N., van Vliet, T. & Silverberg, A. (1981). Influence of polymerization initiation rate on permeability of aqueous polyacrylamide gels. J. Polym. Sci.: Polym. Phys. 19, 15051512.Google Scholar
Weiss, R. A. & Zhao, H. (2009). Rheological behavior of oligomeric ionomers. J. Rheol. 53, 191213.CrossRefGoogle Scholar
Williams, M. L., Landel, R. F. & Ferry, J. D. (1955). The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J. Amer. Chem. Soc. 77, 37013707.Google Scholar
Xu, B. & Li, H. (2013). An experimental and modeling study of the viscoelastic behavior of collagen gel. J. Biomech. Eng. 135, 054501.Google Scholar
Zener, C. (1956). Elasticity and anelasticity of metals. University of Chicago Press, Chicago, IL.Google Scholar
Zhang, Z., Chen, Q. & Colby, R. H. (2018). Dynamics of associative polymers. Soft. Matt. 14, 29612977.Google Scholar
Zhao, X., Huebsch, N., Mooney, D. J. & Suo, Z. (2010). Stress–relaxation behavior in gels with ionic and covalent crosslinks. J. Appl. Phys. 107, 063509.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Time Dependent Behavior
  • Catalin R. Picu, Rensselaer Polytechnic Institute, New York
  • Book: Network Materials
  • Online publication: 15 September 2022
  • Chapter DOI: https://doi.org/10.1017/9781108779920.010
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Time Dependent Behavior
  • Catalin R. Picu, Rensselaer Polytechnic Institute, New York
  • Book: Network Materials
  • Online publication: 15 September 2022
  • Chapter DOI: https://doi.org/10.1017/9781108779920.010
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Time Dependent Behavior
  • Catalin R. Picu, Rensselaer Polytechnic Institute, New York
  • Book: Network Materials
  • Online publication: 15 September 2022
  • Chapter DOI: https://doi.org/10.1017/9781108779920.010
Available formats
×