Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-13T08:28:25.039Z Has data issue: false hasContentIssue false

2 - The anatomical locus of lesion in category-specific semantic disorders and the format of the underlying conceptual representations

from Part I - Semantic Memory: Building Models from Lesions

Published online by Cambridge University Press:  14 September 2009

Guido Gainotti
Affiliation:
Catholic University of Rome
John Hart
Affiliation:
University of Texas, Dallas
Michael A. Kraut
Affiliation:
The Johns Hopkins University School of Medicine
Get access

Summary

Our knowledge of the world is based upon two main kinds of cognitive processes: perceptual activities, which continuously give us information about external objects and actions performed with these objects; and conceptual activities, which allow us to have stable internal representations of objects, actions, and more abstract entities. However, in spite of the complementary nature of these two kinds of cognitive activities, and of the fact that sensory–motor functions certainly play a preliminary role in the acquisition of conceptual knowledge, there is a discrepancy between the large amount of information available about the nature, mechanisms, and neural basis of perceptual activities and the very poor and controversial knowledge that we still have about the nature and the neural substrates of conceptual representations. This lack of solidly established knowledge concerns two main aspects of the semantic–conceptual activities, namely the format of the semantic representations and the neuroanatomical substrates of concepts. On the contrary, there is general agreement that concepts are categorically organized in the brain. The aim of the present chapter is to show that format and categorical organization of semantic representations are strictly intermingled and that the study of the anatomical lesions underlying category-specific semantic disorders can contribute to clarifying the nature of these intimate relationships.

The plan that I intend to follow in the development of this chapter will, therefore, consist of the following steps: (i) I shall discuss the problem of the format of the semantic representations and of their relationships with the underlying sensory–motor activities; (ii) I shall, then, take into account the question of the categorical organization of semantic knowledge, focusing on the most relevant and debated dichotomies, namely on the distinction between category-specific disorders for actions (verbs) and for objects (nouns) and, within the latter, on the distinction between living things and artifacts.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albanese, E., Capitani, E., Barbarotto, R., and Laiacona, M. (2000). Semantic category dissociations, familiarity and gender. Cortex, 36: 733–46.CrossRefGoogle ScholarPubMed
Allport, D. A. (1985). Distributed memory, modular systems and dysphasia. In Newman, S. K. and Epstein, R. (eds.), Current Perspectives in Dysphasia. Edinburgh: Churchill Livingstone, pp. 32–60.Google Scholar
Anderson, J. R. and Bower, G. H. (1973). Human Associative Memory. New York: Winston & Sons.Google Scholar
Bak, T. and Hodges, J. R. (1997). Noun–verb dissociation in three patients with motor neuron disease and aphasia. Brain and Language, 60: 38–40.Google Scholar
Bak, T. and Hodges, J. R. (2003). “Kissing and Dancing” – a test to distinguish the lexical and conceptual contributions to noun/verb and action/object dissociation. Preliminary results in patients with frontotemporal dementia. Journal of Neurolinguistics, 16: 169–81.CrossRefGoogle Scholar
Ballard, D. H. (1986). Cortical connections and parallel processing: structure and function. Behavioral and Brain Sciences, 9: 67–120.CrossRefGoogle Scholar
Barbarotto, R., Capitani, E., Spinnler, H, and Trivelli, C. (1995). Slowly progressive semantic impairment with category specificity. Neurocase, 1: 107–19.CrossRefGoogle Scholar
Barbarotto, R., Laiacona, M., Macchi, V., and Capitani, E. (2002). Picture reality decision, semantic categories and gender. A new set of pictures, with norms and an experimental study. Neuropsychologia, 40: 1637–53.CrossRefGoogle Scholar
Basso, A., Capitani, E, and Laiacona, M. (1988). Progressive language impairment without dementia: A case with isolated category specific semantic effect. Journal of Neurology, Neurosurgery and Psychiatry, 51: 1201–7.CrossRefGoogle Scholar
Baxter, D. M. and Warrington, E. K. (1985). Category-specific phonological dysgraphia. Neuropsychologia, 23: 653–66.CrossRefGoogle ScholarPubMed
Bird, H., Howard, D. and Franklin, S. (2000). Why is a verb like an inanimate object? Grammatical category and semantic category deficits. Brain and Language, 72: 246–309.CrossRefGoogle ScholarPubMed
Braak, H. and Braak, E. (1991). Neuropathological stageing of Alzheimer-related changes. Review. Acta Neuropathologica (Berlin), 82: 239–59.CrossRefGoogle Scholar
Breedin, S. D. and Martin, R. C. (1996). Patterns of verb impairment in aphasia: an analysis of four cases. Cognitive Neuropsychology, 13: 51–91.CrossRefGoogle ScholarPubMed
Breedin, S. D., Saffran, E, and Coslett, H. (1994). Reversal of the concreteness effect in a patient with semantic dementia. Cognitive Neuropsychology, 11: 617–69.CrossRefGoogle Scholar
Buccino, G., Binkofski, F., Fink, G. R., Fadiga, L., Fogassi, L., Gallese, V., et al. (2001). Action observation activates premotor and parietal areas in somatotopic manner: An fMRI study. European Journal of Neuroscience, 13: 400–4.Google ScholarPubMed
Bussey, T. J. and Saksida, L. M (2002). The organization of visual object representation: a connectionist model of effects of lesions in perirhinal cortex. European Journal of Neuroscience, 15: 355–64.CrossRefGoogle Scholar
Bussey, T. J., Saksida, L. M. and Murray, E. A. (2003). Impairments in visual discrimination after perirhinal cortex lesions: testing “declarative” vs “perceptual–mnemonic” views of perirhinal cortex functions. European Journal of Neuroscience, 17: 649–60.CrossRefGoogle Scholar
Buxbaum, L. J. and Saffran, E. M. (2002). Knowledge of object manipulation and object function: Dissociations in apraxic and non-apraxic subjects. Brain and Cognition, 82: 179–99.Google Scholar
Buxbaum, L. J., Veramonti, T, and Schwartz, M. F. (2000). Function and manipulation tool knowledge in apraxia: Knowing “what for” but not “how”. Neurocase, 6: 83–97.Google Scholar
Campbell, R. and Manning, L. (1996). Optic aphasia: a case with spared action naming and associated disorders. Brain and Language, 53: 183–221.CrossRefGoogle ScholarPubMed
Capitani, E., Laiacona, M. and Barbarotto, R. (1999). Gender affects word retrieval of certain categories in semantic fluency tasks. Cortex, 35: 273–8.CrossRefGoogle ScholarPubMed
Capitani, E., Laiacona, M., Mahon, B. and Caramazza, A. (2003). What are the facts of semantic category-specific deficits? A critical review of the clinical evidence. Cognitive Neuropsychology, 20: 213–61.CrossRefGoogle ScholarPubMed
Cappa, S., Binetti, G., Pezzini, A., Padovani, A., Rozzini, L, and Trabucchi, M. (1998a). Object and action naming in Alzheimer's disease and frontotemporal dementia. Neurology, 50: 351–5.CrossRefGoogle Scholar
Cappa, S., Frugoni, M., Pasquali, P., Perani, D. and Zorat, F. (1998b). Category-specific naming impairment for artefacts: a new case. Neurocase, 4: 391–7.CrossRefGoogle Scholar
Caramazza, A. (1998). The interpretation of semantic category-specific deficits: What do they really reveal about the organization of conceptual knowledge in the brain?Neurocase, 4: 265–72.CrossRefGoogle Scholar
Caramazza, A. and Hillis, A. (1991). Lexical organization of nouns and verbs in the brain. Nature, 349: 788–90.CrossRefGoogle Scholar
Caramazza, A., Hillis, A., Rapp, B. C., and Romani, C. (1990). The multiple semantic hypothesis: multiple confusions?Cognitive Neuropsychology, 7: 161–89.CrossRefGoogle Scholar
Caramazza, A. and Shelton, J. R. (1998). Domain-specific knowledge systems in the brain: the animate–inanimate distinction. Journal of Cognitive Neuroscience, 10: 1–34.CrossRefGoogle ScholarPubMed
Cardebat, D., Demonet, J. F., Celsis, P., and Puel, M. (1996). Living/nonliving dissociation in a case of semantic dementia: A SPECT activation study. Neuropsychologia, 34: 1175–9.CrossRefGoogle Scholar
Chambers, D. and Reisberg, D. (1985). Can mental images be ambiguous?Journal of Experimental Psychology: Human Perception and Performance, 11: 317–28.Google Scholar
Churchland, P. S. and Sejnowsky, T. J. (1988). Neural representation and neural computation. Nadel, L. (ed.), Biological Computation. Cambridge, MA: MIT Press.Google Scholar
Coccia, M., Bartolini, M., Luzzi, S., Provinciali, L., and Lambon-Ralph, M. A. (2004). Semantic memory is an amodal, dynamic system: evidence from the interaction of naming and object use in semantic dementia. Cognitive Neuropsychology, 21: 513–27.CrossRefGoogle ScholarPubMed
Damasio, A. R. (1989). Time-locked multiregional retroactivation: a systems level proposal for the neural substrates of recall and recognition. Cognition, 33: 25–62.CrossRefGoogle ScholarPubMed
Damasio, A. R. (1990). Category-related recognition defects as a clue to the neural substrates of knowledge. Trends in Neurosciences, 13: 95–8.CrossRefGoogle Scholar
Damasio, A. R. and Tranel, D. (1993). Nouns and verbs are retrieved with different distributed neural systems. Proceedings of the National Academy of Sciences USA, 90: 4957–60.CrossRefGoogle Scholar
Daniele, A., Giustolisi, L., Silveri, M. C., Colosimo, C. and Gainotti, G. (1994). Evidence for a possibile neuroanatomical basis for lexical processing of nouns and verbs. Neuropsychologia, 332: 1325–41.CrossRefGoogle Scholar
Daum, J., Riesch, G., Sartori, G., and Birbaumer, N. (1996). Semantic memory impairment in Alzheimer's disease. Journal of Clinical and Experimental Neuropsychology, 18: 648–65.CrossRefGoogle ScholarPubMed
Decety, J., Grezes, J., Costes, N., Perani, D., Jeannerod, M., Procyk, E., et al. (1997). Brain activity during observation of actions. Influence of action content and subject's strategy. Brain, 120: 1763–77.CrossRefGoogle ScholarPubMed
Renzi, E. and Lucchelli, F. (1994). Are semantic systems separately represented in the brain? The case of living category impairment. Cortex, 30: 3–25.CrossRefGoogle ScholarPubMed
Desimone, R. (1991). Face-selective cells in the temporal cortex of monkeys. Journal of Cognitive Neuroscience, 3: 1–8.CrossRefGoogle ScholarPubMed
Eichenbaum, H. and Bunsey, M. (1995). On the binding of associations in memory: Clues from studies on the role of the hippocampal region in paired associate learning. Current Directions in Psychological Science, 4: 19–23.CrossRefGoogle Scholar
Farah, M. J. and McClelland, J. L. (1991). A computational model of semantic memory impairment: modality specificity and emergent category-specificity. Journal of Experimental Psychology: General, 120: 339–57.CrossRefGoogle ScholarPubMed
Farah, M. J., Meyer, M. M., and McMullen, P. A. (1996). The living/non-living dissociation is not an artifact: giving an a priori implausible hypothesis a strong test. Cognitive Neuropsychology, 13: 137–54.CrossRefGoogle Scholar
Farah, M. J. and Wallace, M. A. (1992). Semantically-bounded anomia: implications for the neural implementation of naming. Neuropsychologia, 30: 609–21.CrossRefGoogle ScholarPubMed
Forde, E. M. E., Francis, D., Riddoch, M. J., Rumiati, R. I., and Humphreys, G. W. (1997). On the links between visual knowledge and naming: a single case study of a patient with a category-specific impairment for living things. Cognitive Neuropsychology, 14: 403–58.CrossRefGoogle Scholar
Freund, C. S. (1889). Ueber optische Aphasie und Seelenblindheit. Archiv für Psychiatrie und Nervenkrasse, 20: 371–416.CrossRefGoogle Scholar
Funnell, E. and Mornay Davies, P. (1996). JBR: A reassessment of concept familiarity and a category-specific disorder for living things. Neurocase, 2: 461–74.CrossRefGoogle Scholar
Funnell, E. and Sheridan, J. (1992). Categories of knowledge: Unfamiliar aspects of living and nonliving things. Cognitive Neuropsychology, 9: 135–54.CrossRefGoogle Scholar
Gaffan, D. and Heywood, C. A. (1993). A spurious category-specific visual agnosia for living things in normal humans and non-human primates. Journal of Cognitive Neuroscience, 5: 118–28.CrossRefGoogle Scholar
Gainotti, G. (1990). The categorical organization of semantic and lexical knowledge in the brain. Behavioural Neurology, 3: 109–15.CrossRefGoogle Scholar
Gainotti, G. (2000). What the locus of brain lesion tells us about the nature of the cognitive defect underlying category-specific disorders: a review. Cortex, 36: 539–59.CrossRefGoogle ScholarPubMed
Gainotti, G. (2004). A metanalysis of impaired and spared naming for different categories of knowledge in patients with a visuo-verbal disconnection. Neuropsychologia, 42: 299–319.CrossRefGoogle ScholarPubMed
Gainotti, G. (2005). The influence of gender and lesion location on naming disorders for animals, plants and artefacts. Neuropsychologia, 43: 1633–44.CrossRefGoogle ScholarPubMed
Gainotti, G. (2006). Disorders of semantic memory. In Miller, B. and Goldenberg, G. (eds.), Neuropsychology and Behavior 1, A volume of the Handbook of Clinical Neurology series, 3rd edn. Amsterdam: Elsevier.Google Scholar
Gainotti, G. and Silveri, M. C. (1996). Cognitive and anatomical locus of lesion in a patient with category specific semantic impairment for living beings. Cognitive Neuropsychology, 13: 357–89.CrossRefGoogle Scholar
Gainotti, G., Silveri, M. C., Daniele, A., and Giustolisi, L. (1995). Neuroanatomical correlates of category-specific semantic disorders: a critical survey. Memory, 3: 247–64.CrossRefGoogle ScholarPubMed
Gallese, V., Fadiga, L., Fogassi, L. and Rizzolatti, G. (1996). Action recognition in the premotor cortex. Brain, 119: 593–609.CrossRefGoogle ScholarPubMed
Galton, C., Patterson, K., Graham, K., Lambon-Ralph, M. A., Williams, G., Antoun, N., Sahakian, B. J., and Hodges, J. R. (2001). Different patterns of temporal atrophy in Alzheimer's disease and semantic dementia. Neurology, 57: 216–25.CrossRefGoogle Scholar
Garrard, P., Patterson, K., Watson, P. C. and Hodges, J. R. (1998). Category-specific semantic loss in dementia of Alzheimer's type. Functional–anatomical correlations from cross-sectional analyses. Brain, 121: 633–46.CrossRefGoogle ScholarPubMed
Geschwind, N. (1965). Disconnexion syndromes in animals and man. Brain, 88: 237–94.CrossRefGoogle ScholarPubMed
Geschwind, N. (1967). The varieties of naming errors. Cortex, 3: 97–112.CrossRefGoogle Scholar
Goldenberg, G. (1992). Loss of visual imagery and loss of visual knowledge. A case study. Neuropsychologia, 12: 1081–99.CrossRefGoogle Scholar
Gonnerman, L. M., Anderson, E. S., Devlin, J. T., Kempler, D., and Seidenberg, M. S. (1997). Double dissociation of semantic categories in Alzheimer's disease. Brain and Language, 57: 254–79.CrossRefGoogle ScholarPubMed
Goodale, M. A., Milner, A. D., Jakobson, L. S., and Carey, D. P. (1991). A neurological dissociation between perceiving objects and grasping them. Nature, 349: 154–6.CrossRefGoogle Scholar
Goodglass, H., Klein, B., Carey, P., and Jones, K. (1966). Specific semantic word categories in aphasia. Cortex, 2: 74–89.CrossRefGoogle Scholar
Gross, C. G., Rocha-Miranda, C. E., and Bender, D. B. (1972). Visual properties of neurons in inferotemporal cortex of the macaque. Journal of Neurophysiology, 35: 96–111.CrossRefGoogle ScholarPubMed
Grossman, M., Koenig, P., DeVita, C., Glosser, G., Aslop, D., Detre, J., and Gee, J. (2002). Neural representation of verb meaning; an fMRI study. Human Brain Mapping, 15: 124–34.CrossRefGoogle ScholarPubMed
Hart, J., Berndt, R. S., and Caramazza, A. (1985). Category-specific naming deficit following cerebral infarction. Nature, 316: 439–40.CrossRefGoogle ScholarPubMed
Hart, J. and Gordon, B. (1992). Neural subsystem for object knowledge. Nature, 359: 60–4.CrossRefGoogle Scholar
Hillis, A. E. and Caramazza, A. (1991). Category-specific naming and comprehension impairment: a double dissociation. Brain, 114: 2081–94.CrossRefGoogle ScholarPubMed
Hillis, A. E. and Caramazza, A. (1995). Cognitive and neural mechanisms underlying visual and semantic processing: implications from “optic aphasia”. Journal of Cognitive Neuroscience, 7: 457–78.CrossRefGoogle ScholarPubMed
Hillis, A. E., Tuffiash, E., and Caramazza, A. (2002a). Modality-specific deterioration in naming verbs in nonfluent primary progressive aphasia. Journal of Cognitive Neuroscience, 14: 1099–108.CrossRefGoogle Scholar
Hillis, A. E., Tuffiash, E., Wityk, R. J., and Barker, P. B. (2002b). Regions of neural dysfunction associated with impaired naming of actions and objects in acute stroke. Cognitive Neuropsychology, 19: 523–34.CrossRefGoogle Scholar
Hodges, J. R. (2001). Frontotemporal dementia (Pick's disease): Clinical features and assessment. Neurology, 56: S6–S10.CrossRefGoogle ScholarPubMed
Howard, D. and Patterson, K. (1992). Pyramids and Palm Trees: access from pictures and words. Bury St. Edmunds (UK), Thames Valley Test Company.Google Scholar
Humphreys, G. W. and Riddoch, M. J. (1988). On the case for multiple semantic systems: a reply to Shallice. Cognitive Neuropsychology, 5: 143–50.CrossRefGoogle Scholar
Jack, C. R., Petersen, R. C., Xu, J. C., Waring, S. C., O'Brien, P. C., Tangalos, E. G., et al. (1997). Medial temporal atrophy on MRI in normal aging and very mild Alzheimer's disease. Neurology, 49: 786–94.CrossRefGoogle ScholarPubMed
Jackendoff, R. (1987). On beyond zebra: the relation of linguistic and visual information. Cognition, 26: 89–114.CrossRefGoogle ScholarPubMed
Jackendoff, R. (1990). Semantic Structures. Cambridge, MA: MIT Press.Google Scholar
Kellenbach, M. L., Brett, M., and Patterson, K. (2003). Actions speak louder than functions: The importance of manipulability and action in tool representation. Journal of Cognitive Neuroscience, 15: 30–46.CrossRefGoogle ScholarPubMed
Kieras, D. (1978). Beyond pictures and words: alternative information-processing models for imagery effects in verbal memory. Psychological Bulletin, 85: 532–54.CrossRefGoogle Scholar
Kolers, P. and Brison, S. (1984). Commentary: on pictures, words and their mental representation. Journal of Verbal Learning and Verbal Behavior, 23: 105–13.CrossRefGoogle Scholar
Kolinsky, R., Fery, P., Messina, D., Evink, S., and Perez, Morais, J. (2002). The fur of the crocodile and the mooing sheep: The longitudinal study of a patient with a category-specific impairment for biological things. Cognitive Neuropsychology, 19: 301–42.CrossRefGoogle Scholar
Laasko, M. P., Soininen, H., Partanen, K., Lehtovirta, H., Hallicainen, M., Hanninen, T., Helkala, E.-L., Vainio, P., and Riekkinen, P. J. Sr. (1998). MRI of the hippocampus in Alzheimer's disease: sensibility, specificity and analysis of incorrectly classified subjects. Neurobiology of Aging, 19: 23–31.Google Scholar
Laiacona, M., Barbarotto, R., and Capitani, E. (1993). Perceptual and associative knowledge in category specific impairment of semantic memory: a study of two cases. Cortex, 29: 727–40.CrossRefGoogle ScholarPubMed
Lambon-Ralph, M. A., Graham, K. S., Patterson, K., and Hodges, J. R. (1999). Is a picture worth a thousand words? Evidence from concept definitions by patients with semantic dementia. Brain and Language, 70: 309–35.CrossRefGoogle Scholar
Lambon-Ralph, M. A., Howard, D., Nightingale, G., and Ellis, A. W. (1998). Are living and nonliving category-specific deficits causally linked to impaired perceptual or associative knowledge? Evidence from a category-specific double dissociation. Neurocase, 4: 311–38.CrossRefGoogle Scholar
Lambon-Ralph, M. A., Moriarty, L., and Sage, K. (2002). Anomia is simply a reflection of semantic and phonological impairment: Evidence from a case-series study. Aphasiology, 16: 56–82.CrossRefGoogle Scholar
Lambon-Ralph, M. A., Patterson, K., Garrard, P., and Hodges, J. R. (2003). Semantic dementia with category specificity: A comparative case-series study. Cognitive Neuropsychology, 20: 307–26.CrossRefGoogle Scholar
Lauro-Grotto, R., Reich, S., and Visadoro, M. (1997). The computational role of conscious processing in a model of semantic memory. In Ito, M., Miyashita, S. and Rolls, E. (eds.), Cognition, Computation and Consciousness. Oxford: Oxford University Press, pp. 249–63.Google Scholar
Laws, K. R. (1999). Gender affects naming latencies for living and nonliving things: implications for familiarity. Cortex, 35: 729–33.CrossRefGoogle ScholarPubMed
Laws, K. R. (2000). Category-specific naming errors in normal subjects: the influence of evolution and experience. Brain and Language, 75: 123–33.CrossRefGoogle ScholarPubMed
Laws, K. R. (2002). Category-specific naming and modality-specific imagery. Brain and Cognition, 48: 418–20.Google ScholarPubMed
Laws, K. R. (2004). Sex differences in lexical size across semantic categories. Personality and Individual Differences, 36: 23–32.CrossRefGoogle Scholar
Laws, K. R. (2005). “Illusions of normality”: a methodological critique of category-specific naming. Cortex, 41: 842–51.CrossRefGoogle ScholarPubMed
Laws, K. R., Evans, J. J., Hodges, J. R., and McCarthy, R. (1995). Naming without knowing and appearance without associations: evidence for constructive processes in semantic memory?Memory, 3: 409–33.CrossRefGoogle ScholarPubMed
Lee, A. C. H., Bussey, T. J., Murray, E. A., Saksida, L. M., Epstein, R. A., Kapur, R., Hodges, J. R., and Graham, K. S. (2005). Perceptual deficits in amnesia: challenging the medial temporal lobe “mnemonic” view. Neuropsychologia, 43: 1–11.CrossRefGoogle ScholarPubMed
Manning, L. and Campbell, R. (1992). Optic aphasia with spared action naming: a description of possible loci of impairment. Neuropsychologia, 30: 587–92.CrossRefGoogle Scholar
Marin, O. S. M., Saffran, E. M., and Schwartz, M. F. (1976). Dissociations of language in aphasia: implications for normal functions. Annals of the New York Academy of Sciences, 280: 868–84.CrossRefGoogle Scholar
Marra, C., Ferraccioli, M., and Gainotti, G. (in press). Gender-related dissociations of categorical fluency in normal subjects and in Alzheimer's disease. Neuropsychology.Google Scholar
Marshall, J. (2003). Noun–verb dissociations – evidence from acquisition and developmental and acquired impairments. Journal of Neurolinguistics, 16: 67–84.CrossRefGoogle Scholar
Marshall, J., Chiat, S., Robson, J., and Pring, T. (1996a). Calling a salad a federation: an investigation of semantic jargon: Part 2, verbs. Journal of Neurolinguistics, 9: 251–60.CrossRefGoogle Scholar
Marshall, J., Pring, T., Chiat, S., and Robson, J. (1996b). Calling a salad a federation: an investigation of semantic jargon. Part 1, nouns. Journal of Neurolinguistics, 9: 237–50.CrossRefGoogle Scholar
Martin, A. (1998). Organization of semantic knowledge and the origin of words in the brain. In Jablonski, N. G. and Aiello, L. C. (eds.), The Origins and Diversification of Language. San Francisco: California Academy of Sciences, pp. 69–88.Google Scholar
Martin, A. and Caramazza, A. (2003). Neuropsychological and neuroimaging perspectives on conceptual knowledge: an introduction. Cognitive Neuropsychology, 20: 195–212.CrossRefGoogle Scholar
Martin, A. and Chao, L. L. (2001). Semantic memory and the brain: Structure and processes. Current Opinion in Neurobiology, 11: 194–201.CrossRefGoogle ScholarPubMed
Martin, A., Ungerleider, L. G., and Haxby, J. V. (2000). Category-specificity and the brain: the sensory–motor model of semantic representations of objects. In Gazzaniga, M. S. (ed.), The New Cognitive Neurosciences. Cambridge, MA: MIT Press, pp. 1023–36.Google Scholar
McCarthy, R. A. and Warrington, E. K. (1985). Category-specificity in an agrammatic patient: the relative impairment of word retrieval and comprehension. Neuropsychologia, 23: 709–27.CrossRefGoogle Scholar
McCarthy, R. A. and Warrington, E. K. (1988). Evidence for modality-specific meaning systems in the brain. Nature, 334: 428–30.CrossRefGoogle Scholar
McCarthy, R. A. and Warrington, E. K. (1991). Cognitive Neuropsychology: A Clinical Introduction. New York: Academic Press.Google Scholar
McKenna, P. and Parry, R. (1994). Category-specificity in the naming of natural and manmade objects: Normative data from adults and children. Neuropsychological Rehabilitation, 4: 225–81.CrossRefGoogle Scholar
McKenna, P. and Warrington, E. K. (2000). The neuropsychology of semantic memory. In Boller, F. and Grafman, J. (eds.), Handbook of Neuropsychology, 2nd edn. Vol. 2. Amsterdam: Elsevier, pp. 355–82.Google Scholar
Mesulam, M. M. (1998). From sensation to cognition. Brain, 121: 1013–52.CrossRefGoogle Scholar
Mesulam, M. M., Hoesen, G. W., Pandya, D. N., and Geschwind, N. (1977). Limbic and sensory connections of the IPL in the rhesus monkey. Brain Research, 136: 393–414.CrossRefGoogle Scholar
Miceli, G., Silveri, M. C., Nocentini, U., and Caramazza, A. (1988). Patterns of dissociation in comprehension and production of nouns and verbs. Aphasiology, 2: 351–8.CrossRefGoogle Scholar
Miceli, G., Silveri, M. C., Villa, G., and Caramazza, A. (1984). On the basis of the agrammatic's difficulty in producing main verbs. Cortex, 20: 207–20.CrossRefGoogle ScholarPubMed
Miozzo, A., Soardi, M., and Cappa, S. F. (1994). Pure anomia with spared action naming due to a left temporal lesion. Neuropsychologia, 32: 1101–9.CrossRefGoogle ScholarPubMed
Mishkin, M., Malamut, B., and Bachevalier, J. (1984). Memories and habits: Two neural systems. In Lynch, G., McGaugh, J. L. and Weinberger, N. M.. (eds.), Neurobiology of Learning and Memory. New York: The Guilford Press, pp. 65–77.Google Scholar
Moran, T. P. (1973). The symbolic nature of visual imagery. Third International Joint Conference on Artificial Intelligence, pp. 472–7.
Moss, H. E., Tyler, L. K., and Jennings, F. (1997). When leopards lose their spots: knowledge of visual properties in category-specific deficits for living things. Cognitive Neuropsychology, 14: 901–50.CrossRefGoogle Scholar
Moss, H. E., Tyler, L. K., Durrant-Peatfield, M., and Bunn, E. M. (1998). Two eyes of a see-through: impaired and intact semantic knowledge in a case of selective deficit for living things. Neurocase, 4: 291–310.Google Scholar
Mummery, C. J., Patterson, K., Price, C. J, Ashburner, J., Frackowiak, R. S. J., and Hodges, J. R. (2000). A voxel based morphometry study of semantic dementia: The relation of temporal lobe atrophy to cognitive deficit. Annals of Neurology, 47: 36–45.3.0.CO;2-L>CrossRefGoogle Scholar
Murray, E. A. (2000). Memory for objects in nonhuman primates. In Gazzaniga, M. S. (ed.), The New Cognitive Neurosciences. London: The MIT Press, pp. 753–63.Google Scholar
Murray, E. A. and Bussey, T. J. (1999). Perceptual–mnemonic functions of perirhinal cortex. Trends in Cognitive Sciences, 3: 142–51.CrossRefGoogle ScholarPubMed
O'Reilly, R. C. and Rudy, J. W. (2001). Conjunctive representations in learning and memory: principles of cortical and hippocampal function. Psychological Review, 108: 311–45.CrossRefGoogle ScholarPubMed
Parker, A. and Gaffan, D. (1998). Memory systems in primates: episodic, semantic and perceptual learning. In Milner, A. D. (ed.), Comparative Neuropsychology. Oxford: Oxford University Press, pp. 109–26.CrossRefGoogle Scholar
Patterson, K., Graham, N., and Hodges, J. R. (1994). The impact of semantic memory loss on phonological representations. Journal of Cognitive Neuroscience, 6: 57–69.CrossRefGoogle ScholarPubMed
Patterson, K. and Hodges, J. R. (2000). Semantic dementia: one window on the structure and organisation of semantic memory. In Boller, F. and Grafman, J. (eds.), Handbook of Neuropsychology. 2nd edn. Vol. 2. Amsterdam: Elsevier, pp. 313–33.Google Scholar
Pietrini, V., Nertempi, P., Vaglia, A., Revello, M. G., Pinna, V., and Ferro-Milone, F. (1988). Recovery from herpes simplex encephalitis: selective impairment of specific semantic categories with neuroradiological correlation. Journal of Neurology, Neurosurgery and Psychiatry, 51: 1284–93.CrossRefGoogle ScholarPubMed
Pinker, S. (1989). Learnability and cognition. The Acquisition of Argument Structure. Cambridge, MA: MIT Press.Google Scholar
Pulvermüller, F., Harle, M., and Hummel, F. (2001). Walking or talking? Behavioral and neurophysiological correlates of action verb processing. Brain and Language, 78: 143–68.CrossRefGoogle Scholar
Pylyshyn, Z. W. (1973). What the mind's eye tells to the mind's brain: a critique of mental imagery. Psychological Bulletin, 80: 1–24.CrossRefGoogle Scholar
Rapp, B. and Caramazza, A. (1998). A case of selective difficulty in writing verbs. Neurocase, 4: 127–40.CrossRefGoogle Scholar
Riddoch, M. J., Humphreys, G. W., Coltheart, M., and Funnell, E. (1988). Semantic systems or system? Neuropsychological evidence re-examined. Cognitive Neuropsychology, 5: 3–25.CrossRefGoogle Scholar
Rizzolatti, G., Fadiga, L., Matelli, M., Bettinardi, V., Paulesu, E., and Perani, D., et al. (1996). Localization of grasp representations in humans by PET. 1. Observation versus execution. Experimental Brain Research, 111: 246–52.CrossRefGoogle ScholarPubMed
Rogers, T. T., Lambon-Ralph, M. A., Hodges, J., and Patterson, K. (2004). Natural selection: the impact of semantic impairment on lexical and object decision. Cognitive Neuropsychology, 21: 331–52.CrossRefGoogle ScholarPubMed
Sacchett, C. and Humphreys, G. W. (1992). Calling a squirrel a squirrel but a canoe a wigwam: a category-specific deficit for artefactual objects and body parts. Cognitive Neuropsychology, 9: 73–86.CrossRefGoogle Scholar
Saffran, E. M. and Schwartz, M. F. (1994). Of cabbages and things: semantic memory from a neuropsychological perspective – A tutorial review. Attention and Performance, 25: 507–36.Google Scholar
Samson, D. and Pillon, A. (2003). A case of impaired knowledge for fruit and vegetables. Cognitive Neuropsychology, 20: 373–400.CrossRefGoogle ScholarPubMed
Samson, D., Pillon, A., and Wilde, V. (1998). Impaired knowledge of visual and non-visual attributes in a patient with a semantic impairment for living entities: A case of a true category-specific deficit. Neurocase, 4: 273–90.CrossRefGoogle Scholar
Sartori, G. and Job, R. (1988). The oyster with four legs: a neuropsycholigical study on the interaction of visual and semantic information. Cognitive Neuropsychology, 5: 105–32.CrossRefGoogle Scholar
Sartori, G., Job, R., Mozzo, M., Zago, S., and Marchiori, G. (1993). Category-specific form-knowledge deficit in a patient with Herpes Simplex virus encephalitis. Journal of Clinical and Experimental Neuropsychology, 15: 280–99.CrossRefGoogle Scholar
Saygin, A. P., Wilson, S. M., Dronkers, N. F., and Bates, E. (2004). Action comprehension in aphasia: linguistic and non-linguistic deficits and their lesion correlates. Neuropsychologia, 42: 1788–804.CrossRefGoogle ScholarPubMed
Seymour, P. H. K. (1979). Human Visual Cognition. London: Collier Macmillan.Google Scholar
Shallice, T. (1988). From Neuropsychology to Mental Structure. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Shanon, B. (1988). Semantic representation of meaning: A critique. Psychological Review, 104: 70–93.Google Scholar
Shapiro, K. and Caramazza, A. (2003). The representation of grammatical categories in the brain. Trends in Cognitive Sciences, 7: 201–6.CrossRefGoogle Scholar
Shapiro, K., Shelton, J., and Caramazza, A. (2000). Grammatical class in lexical production and morphological processing: evidence from a case of fluent aplasia. Cognitive Neuropsychology, 17: 665–82.CrossRefGoogle Scholar
Shelton, J. R. and Caramazza, A. (2001). The organisation of semantic memory. In Rapp, B. (ed.), The Handbook of Cognitive Neuropsychology. Hove, UK: Psychology Press, pp. 423–43.Google Scholar
Shelton, J. R., Fouch, E., and Caramazza, A. (1998). The selective sparing of body part knowledge: A case study. Neurocase, 4: 339–51.CrossRefGoogle Scholar
Sheridan, J. and Humphreys, G. W. (1993). A verbal–semantic category-specific recognition impairment. Cognitive Neuropsychology, 10: 143–84.CrossRefGoogle Scholar
Silveri, M. C., Daniele, A., Giustolisi, L., and Gainotti, G. (1991). Dissociation between knowledge of living and non-living things in dementia of the Alzheimer's type. Neurology, 41: 545–6.CrossRefGoogle Scholar
Silveri, M. C. and Di Betta, A. M. (1997). Noun–verb dissociations in brain-damaged patients: further evidence. Neurocase, 3: 477–88.CrossRefGoogle Scholar
Silveri, M. C. and Gainotti, G. (1988). Interaction between vision and language in category-specific semantic impairment. Cognitive Neuropsychology, 5: 677–709.CrossRefGoogle Scholar
Silveri, M. C., Gainotti, G., Perani, D., Cappelletti, J. Y., Carbone, G., and Fazio, F. (1997). Naming deficit for non-living items: neuropsychological and PET study. Neuropsychologia, 35: 359–67.CrossRefGoogle ScholarPubMed
Sirigu, A., Duhamel, J. R., and Poncet, M. (1991). The role of sensorimotor experience in object recognition. Brain, 114: 2555–73.CrossRefGoogle ScholarPubMed
Snowden, J. S., Thompson, J. C., and Neary, D. (2004). Knowledge of famous faces and names in semantic dementia. Brain, 127: 860–72.CrossRefGoogle ScholarPubMed
Stewart, F., Parkin, A. J., and Hunkin, N. M. (1992). Naming impairment following recovery from herpes simplex encephalitis: category-specific?Quarterly Journal of Experimental Psychology, 44A: 261–84.CrossRefGoogle Scholar
Suzuki, W. A. and Amaral, D. G. (1994). Topographic organization of the reciprocal connections between the monkey's entorhinal cortex and the perirhinal and parahippocampal cortices. Journal of Neurosciences, 13: 2430–51.Google Scholar
Teixeira-Ferreira, C., Giuliano, B., Ceccaldi, M., and Poncet, M. (1997). Optic aphasia: evidence of the contribution of different neural systems to object and action naming. Cortex, 33: 499–514.Google Scholar
Tranel, D., Adolphs, R., Damasio, H., and Damasio, A. R. (2001). A neural basis for the retrieval of words for actions. Cognitive Neuropsychology, 18: 655–70.CrossRefGoogle ScholarPubMed
Tranel, D., Kemmerer, D., Damasio, H., Adolphs, R., and Damasio, A. R. (2003). Neural correlates of conceptual knowledge for actions. Cognitive Neuropsychology, 20: 409–32.CrossRefGoogle ScholarPubMed
Tyler, L. K., Moss, H. E., Durrant-Peatfield, M., and Levy, J. (2000). Conceptual structure and the structure of categories: A distributed account of category-specific deficits. Brain and Language, 75: 195–231.CrossRefGoogle ScholarPubMed
Ungerleider, L. G. and Mishkin, M. (1982). Two cortical visual systems. In Ingle, D. J., Goodale, M. A. and Mansfield, R. J. W. (eds.), Analysis of Visual Behavior. Cambridge, MA: MIT Press.Google Scholar
Hoesen, G. W. (1982). The primate parahippocampal gyrus: New insights regarding its cortical connections. Trends in Neuroscience, 5: 345–50.CrossRefGoogle Scholar
Warren, C. and Morton, J. (1982). The effects of priming on picture recognition. British Journal of Psychology, 73: 117–29.CrossRefGoogle ScholarPubMed
Warrington, E. K. (1975). The selective impairment of semantic memory. Quarterly Journal of Experimental Psychology, 27: 635–57.CrossRefGoogle ScholarPubMed
Warrington, E. K. (1981). Neuropsychological studies of verbal semantic systems. Philosophical Transactions of the Royal Society of London, B295: 411–23.CrossRefGoogle Scholar
Warrington, E. K. and McCarthy, R. (1983). Category-specific access dysphasia. Brain, 106: 859–78.CrossRefGoogle ScholarPubMed
Warrington, E. K. and McCarthy, R. (1987). Categories of knowledge: Further fractionations and an attempted integration. Brain, 110: 1465–73.CrossRefGoogle ScholarPubMed
Warrington, E. K. and McCarthy, R. (1994). Multiple meaning systems in the brain: a case for visual semantics. Neuropsychologia, 32: 1465–73.CrossRefGoogle ScholarPubMed
Warrington, E. K. and Shallice, T. (1984). Category-specific semantic impairments. Brain, 107: 829–54.CrossRefGoogle ScholarPubMed
Whatmough, C., Chertkow, H., Murtha, S., Templeman, D., Babins, L., and Kelner, N. (2003). The semantic category effect increases with worsening anomia in Alzheimer's type dementia. Brain and Language, 84: 134–47.CrossRefGoogle ScholarPubMed
Zannino, G. D., Perri, R., Carlesimo, G. A., Pasqualetti, P., and Caltagirone, C. (2002). Category-specific impairment in patients with Alzheimer's disease as a function of disease severity: A cross-sectional investigation. Neuropsychologia, 40: 2268–79.CrossRefGoogle ScholarPubMed
Zingeser, L. B. and Berndt, R. S. (1988). Grammatical class and context effect in a case of pure anomia: implications for models of language production. Cognitive Neuropsychology, 5: 473–516.CrossRefGoogle Scholar
Zingeser, L. B. and Berndt, R. S. (1990). Retrieval of nouns and verbs in agrammatism and anomia. Brain and Language, 39: 14–32.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×