Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-10T08:48:30.521Z Has data issue: false hasContentIssue false

Part III - Neurocharacteristic Level of Trust

Published online by Cambridge University Press:  09 December 2021

Frank Krueger
Affiliation:
George Mason University, Virginia
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Beigi, G., Tang, J., Wang, S., & Liu, H. (2016). Exploiting emotional information for trust/distrust prediction. Paper presented at the Proceedings of the 2016 SIAM international conference on data mining. https://doi.org/10.1137/1.9781611974348.10Google Scholar
Bellucci, G., Chernyak, S. V., Goodyear, K., Eickhoff, S. B., & Krueger, F. (2017). Neural signatures of trust in reciprocity: A coordinate‐based meta‐analysis. Human Brain Mapping, 38(3), 12331248. https://doi.org/10.1002/hbm.23451Google Scholar
Bellucci, G., Feng, C., Camilleri, J., Eickhoff, S. B., & Krueger, F. (2018). The role of the anterior insula in social norm compliance and enforcement: Evidence from coordinate-based and functional connectivity meta-analyses. Neuroscience & Biobehavioral Reviews, 92, 378389. https://doi.org/10.1016/j.neubiorev.2018.06.024Google Scholar
Bellucci, G., Molter, F., & Park, S. Q. (2019). Neural representations of honesty predict future trust behavior. Nature Communications, 10(1), 112. https://doi.org/10.1038/s41467-019-13261-8CrossRefGoogle ScholarPubMed
Bigley, G. A., & Pearce, J. L. (1998). Straining for shared meaning in organization science: Problems of trust and distrust. Academy of Management Review, 23(3), 405421. https://doi.org/10.2307/259286Google Scholar
Brüne, M., & Brüne-Cohrs, U. (2006). Theory of mind: Evolution, ontogeny, brain mechanisms and psychopathology. Neuroscience & Biobehavioral Reviews, 30(4), 437455. https://doi.org/10.2307/25928610.1016/j.neubiorev.2005.08.001Google Scholar
Bzdok, D., Langner, R., Caspers, S., et al. (2011). ALE meta-analysis on facial judgments of trustworthiness and attractiveness. Brain Structure and Function, 215(3–4), 209223. https://doi.org/10.1007/s00429-010-0287-4CrossRefGoogle ScholarPubMed
Carrington, S. J., & Bailey, A. J. (2009). Are there theory of mind regions in the brain? A review of the neuroimaging literature. Human Brain Mapping, 30(8), 23132335. https://doi.org/10.1002/hbm.20671Google Scholar
Cooper, J. C., Kreps, T. A., Wiebe, T., Pirkl, T., & Knutson, B. (2010). When giving is good: Ventromedial prefrontal cortex activation for others’ intentions. Neuron, 67(3), 511521. https://doi.org/10.1016/j.neuron.2010.06.030CrossRefGoogle ScholarPubMed
Costa Jr., P. T., McCrae, R. R., & Dye, D. A. (1991). Facet scales for agreeableness and conscientiousness: A revision of the NEO Personality Inventory. Personality and Individual Differences, 12(9), 887898. https://doi.org/10.1016/j.neuron.2010.06.030CrossRefGoogle Scholar
Couch, L. L., & Jones, W. H. (1997). Measuring levels of trust. Journal of Research in Personality, 31(3), 319336. https://doi.org/10.1006/jrpe.1997.2186Google Scholar
Craig, A. (2011). Significance of the insula for the evolution of human awareness of feelings from the body. Annals of the New York Academy of Sciences, 1225(1), 7282. https://doi.org/10.1111/j.1749-6632.2011.05990Google Scholar
Delgado‐Ballester, E. (2004). Applicability of a brand trust scale across product categories. European Journal of Marketing, 38(5–6), 573592. https://doi.org/10.1108/03090560410529222CrossRefGoogle Scholar
Engell, A. D., Haxby, J. V., & Todorov, A. (2007). Implicit trustworthiness decisions: Automatic coding of face properties in the human amygdala. Journal of Cognitive Neuroscience, 19(9), 15081519. https://doi.org/10.1162/jocn.2007.19.9.1508Google Scholar
Engelmann, J. B., Meyer, F., Ruff, C. C., & Fehr, E. (2019). The neural circuitry of affect-induced distortions of trust. Science Advances, 5(3), Article eaau3413. https://doi.org/10.1126/sciadv.aau3413Google Scholar
Evans, A. M., & Krueger, J. I. (2009). The psychology (and economics) of trust. Social and Personality Psychology Compass, 3(6), 10031017. https://doi.org/10.1111/j.1751-9004.2009.00232.xGoogle Scholar
Fehr, E., & Gachter, S. (2000). Cooperation and punishment in public goods experiments. American Economic Review, 90(4), 980994. https://doi.org/10.1257/aer.90.4.980Google Scholar
Filkowski, M. M., Anderson, I. W., & Haas, B. W. (2016). Trying to trust: Brain activity during interpersonal social attitude change. Cognitive, Affective, & Behavioral Neuroscience, 16(2), 325338. https://doi.org/10.3758/s13415-015-0393-0Google Scholar
Fujino, J., Tei, S., Itahashi, T., et al. (2020). Role of the right temporoparietal junction in intergroup bias in trust decisions. Human Brain Mapping, 41(6), 16771688. https://doi.org/10.1002/hbm.24903Google Scholar
Glaeser, E. L., Laibson, D. I., Scheinkman, J. A., & Soutter, C. L. (2000). Measuring trust. The Quarterly Journal of Economics, 115(3), 811846. https://doi.org/10.1162/003355300554926CrossRefGoogle Scholar
Haas, B. W., Ishak, A., Anderson, I. W., & Filkowski, M. M. (2015). The tendency to trust is reflected in human brain structure. NeuroImage, 107, 175181. https://doi.org/10.1016/j.neuroimage.2014.11.060Google Scholar
Hill, C. A., & O’Hara, E. A. (2006). A cognitive theory of trust. Washington University Law Review, 84(7), 17171796. https://doi.org/10.2139/ssrn.869423Google Scholar
Johnson-George, C., & Swap, W. C. (1982). Measurement of specific interpersonal trust: Construction and validation of a scale to assess trust in a specific other. Journal of Personality and Social Psychology, 43(6), 13061317. https://doi.org/10.1037/0022-3514.43.6.1306Google Scholar
Kahneman, D., Knetsch, J. L., & Thaler, R. H. (1986). Fairness and the assumptions of economics. Journal of Business, 59(4), S285S300. https://doi.org/10.1086/296367Google Scholar
Kang, Y., Williams, L. E., Clark, M. S., Gray, J. R., & Bargh, J. A. (2011). Physical temperature effects on trust behavior: The role of insula. Social Cognitive and Affective Neuroscience, 6(4), 507515. https://doi.org/10.1093/scan/nsq077Google Scholar
Kocher, M. G., Martinsson, P., Matzat, D., & Wollbrant, C. (2015). The role of beliefs, trust, and risk in contributions to a public good. Journal of Economic Psychology, 51, 236244. https://doi.org//10.1016/j.joep.2015.10.001CrossRefGoogle Scholar
Koscik, T. R., & Tranel, D. (2011). The human amygdala is necessary for developing and expressing normal interpersonal trust. Neuropsychologia, 49(4), 602611. https://doi.org/10.1016/j.neuropsychologia.2010.09.023Google Scholar
Krall, S. C., Rottschy, C., Oberwelland, E., et al. (2015). The role of the right temporoparietal junction in attention and social interaction as revealed by ALE meta-analysis. Brain Structure and Function, 220(2), 587604. https://doi.org/10.1007/s00429-014-0803-zGoogle Scholar
Kramer, R. M. (1999). Trust and distrust in organizations: Emerging perspectives, enduring questions. Annual Review of Psychology, 50(1), 569598. https://doi.org/10.1146/annurev.psych.50.1.569Google Scholar
Krawczyk, D. C. (2002). Contributions of the prefrontal cortex to the neural basis of human decision making. Neuroscience & Biobehavioral Reviews, 26(6), 631664. https://doi.org/10.1016/S0149-7634(02)00021-0CrossRefGoogle Scholar
Krolak‐Salmon, P., Hénaff, M. A., Isnard, J., et al. (2003). An attention modulated response to disgust in human ventral anterior insula. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society, 53(4), 446453. https://doi.org/10.1002/ana.10502Google Scholar
Krueger, F., & Meyer-Lindenberg, A. (2019). Toward a model of interpersonal trust drawn from neuroscience, psychology, and economics. Trends in Neurosciences, 42(2), 92101. https://doi.org/10.1016/j.tins.2018.10.004CrossRefGoogle Scholar
Ledyard, J. O., Kagel, J. H., & Roth, A. E. (1995). Public goods: A survey of experimental research. In Kagel, J. H. & Roth, A. E. (Eds.), The handbook of experimental economics (pp. 111194). Princeton University Press. https://doi.org/RePEc:wpa:wuwppe:9405003Google Scholar
Lee, J., Lee, J.-N., & Tan, B. C. (2010). Emotional trust and cognitive distrust: From a cognitive-affective personality system theory perspective. Paper presented at the PACIS. https://doi.org/aisel.aisnet.org/pacis2010/114Google Scholar
Lewicki, R. J., McAllister, D. J., & Bies, R. J. (1998). Trust and distrust: New relationships and realities. Academy of Management Review, 23(3), 438458. https://doi.org/10.2307/259288CrossRefGoogle Scholar
Li, J., Xiao, E., Houser, D., & Montague, P. R. (2009). Neural responses to sanction threats in two-party economic exchange. Proceedings of the National Academy of Sciences, 106(39), 1683516840. https://doi.org/10.1073/pnas.0908855106CrossRefGoogle ScholarPubMed
Lieberman, M. D. (2007). Social cognitive neuroscience: A review of core processes. Annual Review of Psychology, 58, 259289. https://doi.org/10.1146/annurev.psych.58.110405.085654CrossRefGoogle ScholarPubMed
Mal, C. I., Davies, G., & Diers‐Lawson, A. (2018). Through the looking glass: The factors that influence consumer trust and distrust in brands. Psychology & Marketing, 35(12), 936947. https://doi.org/10.1002/mar.21146Google Scholar
Marsh, S., & Dibben, M. R. (2005, May). Trust, untrust, distrust and mistrust: An exploration of the dark(er) side. In Herrmann, P., Issarny, V., & Shiu, S. (Eds.), International conference on trust management (pp. 1733). Springer. https://doi.org/10.1007/11429760_2Google Scholar
Mayer, R. C., Davis, J. H., & Schoorman, F. D. (1995). An integrative model of organizational trust. Academy of Management Review, 20(3), 709734. https://doi.org/10.2307/258792CrossRefGoogle Scholar
McCabe, K. A., & Smith, V. L. (2000). A comparison of naive and sophisticated subject behavior with game theoretic predictions. Proceedings of the National Academy of Sciences, 97(7), 37773781. https://doi.org/10.1073/pnas.040577397CrossRefGoogle ScholarPubMed
McCrae, R. R., & Costa Jr., P. T. (1992). Discriminant validity of NEO-PIR facet scales. Educational and Psychological Measurement, 52(1), 229237. https://doi.org/10.1177/001316449205200128Google Scholar
McEvily, B., & Tortoriello, M. (2011). Measuring trust in organisational research: Review and recommendations. Journal of Trust Research, 1(1), 2363. https://doi.org/10.1080/21515581.2011.552424Google Scholar
McKnight, D. H., & Chervany, N. L. (2001). Trust and distrust definitions: One bite at a time. In Falcone, R., Singh, M., & Tan, Y.-H. (Eds.), Trust in cyber-societies (pp. 2754). Springer. https://doi.org/10.1007/3-540-45547-7_3Google Scholar
Morrow Jr., J., Hansen, M. H., & Pearson, A. W. (2004). The cognitive and affective antecedents of general trust within cooperative organizations. Journal of Managerial Issues, 16, 4864. https://doi.org/1G1-115036683Google Scholar
Parks, C. D. (1994). The predictive ability of social values in resource dilemmas and public goods games. Personality and Social Psychology Bulletin, 20(4), 431438. https://doi.org/10.1177/0146167294204010Google Scholar
Posten, A.-C., Ockenfels, A., & Mussweiler, T. (2014). How activating cognitive content shapes trust: A subliminal priming study. Journal of Economic Psychology, 41, 1219. https://doi.org/10.1016/j.joep.2013.04.002Google Scholar
Rilling, J. K., Goldsmith, D. R., Glenn, A. L., et al. (2008). The neural correlates of the affective response to unreciprocated cooperation. Neuropsychologia, 46(5), 12561266. https://doi.org/10.1016/j.neuropsychologia.2007.11.033Google Scholar
Rilling, J. K., Sanfey, A. G., Aronson, J. A., Nystrom, L. E., & Cohen, J. D. (2004). Opposing BOLD responses to reciprocated and unreciprocated altruism in putative reward pathways. Neuroreport, 15(16), 25392243. https://doi.org/10.1097/00001756-200411150-00022Google Scholar
Rousseau, D. M., Sitkin, S. B., Burt, R. S., & Camerer, C. (1998). Not so different after all: A cross-discipline view of trust. Academy of Management Review, 23(3), 393404. https://doi.org/10.5465/amr.1998.926617CrossRefGoogle Scholar
Rule, N. O., Krendl, A. C., Ivcevic, Z., & Ambady, N. (2013). Accuracy and consensus in judgments of trustworthiness from faces: Behavioral and neural correlates. Journal of Personality and Social Psychology, 104(3), 409426. https://doi.org/10.1037/a0031050Google Scholar
Said, C. P., Baron, S. G., & Todorov, A. (2009). Nonlinear amygdala response to face trustworthiness: Contributions of high and low spatial frequency information. Journal of Cognitive Neuroscience, 21(3), 519528. https://doi.org/10.1162/jocn.2009.21041Google Scholar
Sanders, K., Schyns, B., Dietz, G., & Den Hartog, D. N. (2006). Measuring trust inside organisations. Personnel Review, 35(5), 557588. https://DOI.org/10.1108/00483480610682299Google Scholar
Sanfey, A. G., Rilling, J. K., Aronson, J. A., Nystrom, L. E., & Cohen, J. D. (2003). The neural basis of economic decision making in the ultimatum game. Science, 300(5626), 17551758. https://doi.org/10.1126/science.1082976Google Scholar
Saunders, M., Dietz, G., & Thornhill, A. (2014). Trust and distrust: Polar opposites, or independent but co-existing? Human Relations, 67(6), 639665. https://doi.org/10.1177/0018726713500831Google Scholar
Saunders, M., & Thornhill, A. (2004). Trust and mistrust in organizations: An exploration using an organizational justice framework. European Journal of Work and Organizational Psychology, 13(4), 493515. https://doi.org/10.1080/13594320444000182Google Scholar
Schoorman, F. D., Mayer, R. C., & Davis, J. H. (2007). An integrative model of organizational trust: Past, present, and future. Academy of Management Review, 32(2), 344354. https://doi.org/10.5465/amr.2007.24348410Google Scholar
Siegal, M., & Varley, R. (2002). Neural systems involved in “theory of mind.” Nature Reviews Neuroscience, 3(6), 463471. https://doi.org/10.5465/amr.2007.24348410CrossRefGoogle ScholarPubMed
Symons, D. K. (2004). Mental state discourse, theory of mind, and the internalization of self–other understanding. Developmental Review, 24(2), 159188. https://doi.org/10.1016/j.dr.2004.03.001CrossRefGoogle Scholar
Tabibnia, G., Satpute, A. B., & Lieberman, M. D. (2008). The sunny side of fairness: Preference for fairness activates reward circuitry (and disregarding unfairness activates self-control circuitry). Psychological Science, 19(4), 339347. https://doi.org/10.1111/j.1467-9280.2008.02091.xGoogle Scholar
Todorov, A. (2008). Evaluating faces on trustworthiness: An extension of systems for recognition of emotions signaling approach/avoidance behaviors. Annals of the New York Academy of Sciences, 1124(1), 208224. https://doi.org/10.1196/annals.1440.012Google Scholar
Todorov, A., Pakrashi, M., & Oosterhof, N. N. (2009). Evaluating faces on trustworthiness after minimal time exposure. Social Cognition, 27(6), 813833. https://doi.org/10.1521/soco.2009.27.6.813Google Scholar
Unoka, Z., Seres, I., Áspán, N., Bódi, N., & Kéri, S. (2009). Trust game reveals restricted interpersonal transactions in patients with borderline personality disorder. Journal of Personality Disorders, 23(4), 399409. https://doi.org/10.1521/pedi.2009.23.4.399Google Scholar
Van den Bos, W., & Güroğlu, B. (2009). The role of the ventral medial prefrontal cortex in social decision making. Journal of Neuroscience, 29(24), 76317632. https://doi.org/10.1523/JNEUROSCI.1821-09.2009CrossRefGoogle ScholarPubMed
Van Lange, P. A., & Visser, K. (1999). Locomotion in social dilemmas: How people adapt to cooperative, tit-for-tat, and noncooperative partners. Journal of Personality and Social Psychology, 77(4), 762773. https://doi.org/10.1037/0022-3514.77.4.762Google Scholar
Wicker, B., Keysers, C., Plailly, J., Royet, J.-P., Gallese, V., & Rizzolatti, G. (2003). Both of us disgusted in my insula: The common neural basis of seeing and feeling disgust. Neuron, 40(3), 655664. https://doi.org/10.1016/s0896-6273(03)00679-2Google Scholar
Winston, J. S., Strange, B. A., O’Doherty, J., & Dolan, R. J. (2002). Automatic and intentional brain responses during evaluation of trustworthiness of faces. Nature Neuroscience, 5(3), 277283. https://doi.org/10.1038/nn816Google Scholar
Wong, S., Irish, M., O’Callaghan, C., et al. (2017). Should I trust you? Learning and memory of social interactions in dementia. Neuropsychologia, 104, 157167. https://doi.org/10.1016/j.neuropsychologia.2017.08.016Google Scholar
Yamagishi, T., Kanazawa, S., Mashima, R., & Terai, S. (2005). Separating trust from cooperation in a dynamic relationship: Prisoner’s dilemma with variable dependence. Rationality and Society, 17(3), 275308. https://doi.org/10.1177/1043463105055463Google Scholar

References

Aimone, J., Ball, S., & King-Casas, B. (2015). The betrayal aversion elicitation task: An individual level betrayal aversion measure. PLoS ONE, 10(9), 112. https://doi.org/10.1371/journal.pone.0137491Google Scholar
Aimone, J. A., & Houser, D. (2012). What you don’t know won’t hurt you: A laboratory analysis of betrayal aversion. Experimental Economics, 15(4), 571588. https://doi.org/10.1007/s10683-012-9314-zGoogle Scholar
Aimone, J. A., & Houser, D. (2013). Harnessing the benefits of betrayal aversion. Journal of Economic Behavior & Organization, 89, 18. https://doi.org/10.1016/j.jebo.2013.02.001Google Scholar
Aimone, J. A., Houser, D., & Weber, B. (2014). Neural signatures of betrayal aversion: An fMRI study of trust. Proceedings of the Royal Society B: Biological Sciences, 281(1782), Article 20132127. https://doi.org/10.1098/rspb.2013.2127Google Scholar
Anderl, C., Steil, R., Hahn, T., Hitzeroth, P., Reif, A., & Windmann, S. (2018). Reduced reciprocal giving in social anxiety: Evidence from the trust game. Journal of Behavior Therapy and Experimental Psychiatry, 59, 1218. https://doi.org/10.1016/j.jbtep.2017.10.005Google Scholar
Argiolas, A., & Gessa, G. L. (1991). Central functions of oxytocin. Neuroscience & Biobehavioral Reviews, 15(2), 217231. https://doi.org/10.1016/S0149-7634(05)80002-8Google Scholar
Arrow, K. J. (1965). Aspects of the theory of risk-bearing: Yrjö Jahnsson Saatio.Google Scholar
Bartz, J. A., Zaki, J., Bolger, N., & Ochsner, K. N. (2011). Social effects of oxytocin in humans: Context and person matter. Trends in Cognitive Sciences, 15(7), 301309. https://doi.org/10.1016/j.tics.2011.05.002Google Scholar
Battigalli, P., & Dufwenberg, M. (2007). Guilt in games. American Economic Review, 97(2), 170176. https://doi.org/10.1257/aer.97.2.170Google Scholar
Battigalli, P., Dufwenberg, M., & Smith, A. (2019). Frustration, aggression, and anger in leader-follower games. Games and Economic Behavior, 117, 1539. https://doi.org/10.1016/j.geb.2019.06.001CrossRefGoogle Scholar
Bellemare, C., Sebald, A., & Suetens, S. (2019). Guilt aversion in economics and psychology. Journal of Economic Psychology, 73, 5259. https://doi.org/10.1016/j.joep.2019.05.002Google Scholar
Bellucci, G., Chernyak, S. V., Goodyear, K., Eickhoff, S. B., & Krueger, F. (2017). Neural signatures of trust in reciprocity: A coordinate‐based meta‐analysis. Human Brain Mapping, 38(3), 12331248. https://doi.org/10.1002/hbm.23451Google Scholar
Bellucci, G., Hahn, T., Deshpande, G., & Krueger, F. (2019). Functional connectivity of specific resting-state networks predicts trust and reciprocity in the trust game. Cognitive, Affective, & Behavioral Neuroscience, 19(1), 165176. https://doi.org/10.3758/s13415-018-00654-3Google Scholar
Bereczkei, T., Deak, A., Papp, P., Perlaki, G., & Orsi, G. (2013). Neural correlates of Machiavellian strategies in a social dilemma task. Brain and Cognition, 82(1), 108116. https://doi.org/10.1016/j.bandc.2013.02.012Google Scholar
Berg, J., Dickhaut, J., & McCabe, K. (1995). Trust, reciprocity, and social history. Games and Economic Behavior, 10(1), 122142. https://doi.org/10.1006/game.1995.1027Google Scholar
Bernoulli, D. (1954). Exposition of a new theory on the measurement of risk. Econometrica, 22(1), 2236. https://doi.org/10.2307/1909829Google Scholar
Bohnet, I., Greig, F., Herrmann, B., & Zeckhauser, R. (2008). Betrayal aversion: Evidence from Brazil, China, Oman, Switzerland, Turkey, and the United States. American Economic Review, 98(1), 294310. https://doi.org/10.1257/aer.98.1.294Google Scholar
Bohnet, I., & Zeckhauser, R. (2004). Trust, risk and betrayal. Journal of Economic Behavior & Organization, 55(4), 467484. https://doi.org/10.1016/j.jebo.2003.11.004Google Scholar
Boksem, M. A., Mehta, P. H., Van den Bergh, B., et al. (2013). Testosterone inhibits trust but promotes reciprocity. Psychological Science, 24(11), 23062314. https://doi.org/10.1177/0956797613495063Google Scholar
Bolton, G. E., & Ockenfels, A. (2000). ERC: A theory of equity, reciprocity, and competition. American Economic Review, 90(1), 166193. https://doi.org/10.1257/aer.90.1.166CrossRefGoogle Scholar
Booth, A., Granger, D. A., Mazur, A., & Kivlighan, K. T. (2006). Testosterone and social behavior. Social Forces, 85(1), 167191. https://doi.org/10.1353/sof.2006.0116Google Scholar
Bos, P. A., Terburg, D., & Van Honk, J. (2010). Testosterone decreases trust in socially naive humans. Proceedings of the National Academy of Sciences, 107(22), 99919995. https://doi.org/10.1073/pnas.0911700107Google Scholar
Brazelton, T. B., Koslowski, B., & Main, M. (1974). The origins of reciprocity: The early mother-infant interaction. In Lewis, M. & Rosenblum, L. A. (Eds.), The effect of the infant on its caregiver (pp. 4976). Wiley-Interscience.Google Scholar
Buchan, N. R., Croson, R. T., & Dawes, R. M. (2002). Swift neighbors and persistent strangers: A cross-cultural investigation of trust and reciprocity in social exchange. American Journal of Sociology, 108(1), 168206. https://doi.org/10.1086/344546Google Scholar
Cáceda, R., James, G. A., Gutman, D. A., & Kilts, C. D. (2015). Organization of intrinsic functional brain connectivity predicts decisions to reciprocate social behavior. Behavioural Brain Research, 292, 478483. https://doi.org/10.1016/j.bbr.2015.07.008Google Scholar
Cáceda, R., Moskovciak, T., Prendes-Alvarez, S., et al. (2014). Gender-specific effects of depression and suicidal ideation in prosocial behaviors. PLoS ONE, 9(9), Article e108733. https://doi.org/10.1371/journal.pone.0108733Google Scholar
Cáceda, R., Prendes-Alvarez, S., Hsu, J.-J., Tripathi, S. P., Kilts, C. D., & James, G. A. (2017). The neural correlates of reciprocity are sensitive to prior experience of reciprocity. Behavioural Brain Research, 332, 136144. https://doi.org/10.1016/j.bbr.2017.05.030Google Scholar
Canessa, N., Crespi, C., Motterlini, M., et al. (2013). The functional and structural neural basis of individual differences in loss aversion. Journal of Neuroscience, 33(36), 1430714317. https://doi.org/10.1523/JNEUROSCI.0497-13.2013Google Scholar
Cardenas, J. C., & Carpenter, J. (2008). Behavioural development economics: Lessons from field labs in the developing world. The Journal of Development Studies, 44(3), 311338. https://doi.org/10.1080/00220380701848327Google Scholar
Carter, C. S. (1992). Oxytocin and sexual behavior. Neuroscience & Biobehavioral Reviews, 16(2), 131144. https://doi.org/10.1016/S0149-7634(05)80176-9CrossRefGoogle ScholarPubMed
Cartwright, E. (2019). A survey of belief-based guilt aversion in trust and dictator games. Journal of Economic Behavior & Organization, 167, 430444. https://doi.org/10.1016/j.jebo.2018.04.019Google Scholar
Chang, L. J., & Sanfey, A. G. (2011). Great expectations: Neural computations underlying the use of social norms in decision making. Social Cognitive & Affective Neuroscience, 8(3), 277284. https://doi.org/10.1093/scan/nsr094Google Scholar
Chang, L. J., Smith, A., Dufwenberg, M., & Sanfey, A. G. (2011). Triangulating the neural, psychological, and economic bases of guilt aversion. Neuron, 70(3), 560572. https://doi.org/10.1016/j.neuron.2011.02.056Google Scholar
Charness, G., & Dufwenberg, M. (2006). Promises and partnership. Econometrica, 74(6), 15791601. https://doi.org/10.1111/j.1468-0262.2006.00719.xGoogle Scholar
Charness, G., & Rabin, M. (2002). Understanding social preferences with simple tests. The Quarterly Journal of Economics, 117(3), 817869. https://doi.org/10.1162/003355302760193904CrossRefGoogle Scholar
Chiu, P. H., Kayali, M. A., Kishida, K. T., et al. (2008). Self responses along cingulate cortex reveal quantitative neural phenotype for high-functioning autism. Neuron, 57(3), 463473. https://doi.org/10.1016/j.neuron.2007.12.020Google Scholar
Christopoulos, G. I., Tobler, P. N., Bossaerts, P., Dolan, R. J., & Schultz, W. (2009). Neural correlates of value, risk, and risk aversion contributing to decision making under risk. Journal of Neuroscience, 29(40), 1257412583. https://doi.org/10.1523/JNEUROSCI.2614-09.2009Google Scholar
Cisler, J. M., Bush, K., Steele, J. S., Lenow, J. K., Smitherman, S., & Kilts, C. D. (2015). Brain and behavioral evidence for altered social learning mechanisms among women with assault-related posttraumatic stress disorder. Journal of Psychiatric Research, 63, 7583. https://doi.org/10.1016/j.jpsychires.2015.02.014Google Scholar
Clark, C. B., Thorne, C. B., Hardy, S., & Cropsey, K. L. (2013). Cooperation and depressive symptoms. Journal of Affective Disorders, 150(3), 11841187. https://doi.org/10.1016/j.jad.2013.05.011CrossRefGoogle Scholar
Cox, J. C. (2004). How to identify trust and reciprocity. Games and Economic Behavior, 46(2), 260281. https://doi.org/10.1016/S0899-8256(03)00119-2CrossRefGoogle Scholar
Cubitt, R., Gächter, S., & Quercia, S. (2017). Conditional cooperation and betrayal aversion. Journal of Economic Behavior & Organization, 141, 110121. https://doi.org/10.1016/j.jebo.2017.06.013Google Scholar
Dawes, C. T., Fowler, J. H., Johnson, T., McElreath, R., & Smirnov, O. (2007). Egalitarian motives in humans. Nature, 446(7137), 794796. https://doi.org/10.1038/nature05651Google Scholar
Delgado, M. R., Frank, R. H., & Phelps, E. A. (2005). Perceptions of moral character modulate the neural systems of reward during the trust game. Nature Neuroscience, 8(11), 16111618. https://doi.org/10.1038/nn1575Google Scholar
Donaldson, Z. R., & Young, L. J. (2008). Oxytocin, vasopressin, and the neurogenetics of sociality. Science, 322(5903), 900904. https://doi.org/10.1126/science.1158668Google Scholar
Edwards, D. A., Wetzel, K., & Wyner, D. R. (2006). Intercollegiate soccer: Saliva cortisol and testosterone are elevated during competition, and testosterone is related to status and social connectedness with teammates. Physiology & Behavior, 87(1), 135143. https://doi.org/10.1016/j.physbeh.2005.09.007CrossRefGoogle Scholar
Elster, J. (1998). Emotions and economic theory. Journal of Economic Literature, 36(1), 4774. www.jstor.org/stable/2564951Google Scholar
Engelmann, J. B., Meyer, F., Ruff, C. C., & Fehr, E. (2019). The neural circuitry of affect-induced distortions of trust. Science Advances, 5(3), Article eaau3413. https://doi.org/10.1126/sciadv.aau3413CrossRefGoogle ScholarPubMed
Erikson, E. H. (1963). Childhood and society. W. W. Norton & Company.Google Scholar
Fehr, E., & Fischbacher, U. (2003). The nature of human altruism. Nature, 425(6960), 785791. https://doi.org/10.1038/nature02043Google Scholar
Fehr, E., & Gächter, S. (2002). Altruistic punishment in humans. Nature, 415(6868), 137140. https://doi.org/10.1038/415137aGoogle Scholar
Fehr, E., & Schmidt, K. M. (1999). A theory of fairness, competition, and cooperation. The Quarterly Journal of Economics, 114(3), 817868. https://doi.org/10.1162/003355399556151Google Scholar
Fett, A.-K. J., Shergill, S. S., Joyce, D. W., et al. (2012). To trust or not to trust: The dynamics of social interaction in psychosis. Brain, 135(3), 976984. https://doi.org/10.1093/brain/awr359Google Scholar
Fett, A.-K., Shergill, S., Korver-Nieberg, N., Yakub, F., Gromann, P., & Krabbendam, L. (2016). Learning to trust: Trust and attachment in early psychosis. Psychological Medicine, 46(7), 14371447. https://doi.org/10.1017/S0033291716000015Google Scholar
Gordon, E. M., Laumann, T. O., Gilmore, A. W., et al. (2017). Precision functional mapping of individual human brains. Neuron, 95(4), 791807, e797. https://doi.org/10.1016/j.neuron.2017.07.011Google Scholar
Gromann, P. M., Heslenfeld, D. J., Fett, A.-K., Joyce, D. W., Shergill, S. S., & Krabbendam, L. (2013). Trust versus paranoia: Abnormal response to social reward in psychotic illness. Brain, 136(6), 19681975. https://doi.org/10.1093/brain/awt076Google Scholar
Guerra, G., & Zizzo, D. J. (2004). Trust responsiveness and beliefs. Journal of Economic Behavior & Organization, 55(1), 2530. https://doi.org/10.1016/j.jebo.2003.03.003Google Scholar
Hahn, T., Notebaert, K., Anderl, C., et al. (2015). Reliance on functional resting-state network for stable task control predicts behavioral tendency for cooperation. NeuroImage, 118, 231236. https://doi.org/10.1016/j.neuroimage.2015.05.093Google Scholar
Harrison, G. W., List, J. A., & Towe, C. (2007). Naturally occurring preferences and exogenous laboratory experiments: A case study of risk aversion. Econometrica, 75(2), 433458. https://doi.org/10.1111/j.1468-0262.2006.00753.xGoogle Scholar
Heinrichs, M., von Dawans, B., & Domes, G. (2009). Oxytocin, vasopressin, and human social behavior. Frontiers in Neuroendocrinology, 30(4), 548557. https://doi.org/10.1016/j.yfrne.2009.05.005Google Scholar
Holt, C. A., & Laury, S. K. (2002). Risk aversion and incentive effects. American Economic Review, 92(5), 16441655. https://doi.org/10.1257/000282802762024700Google Scholar
Hsu, M., Bhatt, M., Adolphs, R., Tranel, D., & Camerer, C. F. (2005). Neural systems responding to degrees of uncertainty in human decision making. Science, 310(5754), 16801683. https://doi.org/10.1126/science.1115327Google Scholar
Huettel, S. A., Stowe, C. J., Gordon, E. M., Warner, B. T., & Platt, M. L. (2006). Neural signatures of economic preferences for risk and ambiguity. Neuron, 49(5), 765775. https://doi.org/10.1016/j.neuron.2006.01.024Google Scholar
Hutcherson, C. A., Bushong, B., & Rangel, A. (2015). A neurocomputational model of altruistic choice and its implications. Neuron, 87(2), 451462. https://doi.org/10.1016/j.neuron.2015.06.031Google Scholar
Johnson, N. D., & Mislin, A. A. (2011). Trust games: A meta-analysis. Journal of Economic Psychology, 32(5), 865889. https://doi.org/10.1016/j.joep.2011.05.007CrossRefGoogle Scholar
King-Casas, B., & Chiu, P. H. (2012). Understanding interpersonal function in psychiatric illness through multiplayer economic games. Biological Psychiatry, 72(2), 119125. https://doi.org/10.1016/j.biopsych.2012.03.033Google Scholar
King-Casas, B., Sharp, C., Lomax-Bream, L., Lohrenz, T., Fonagy, P., & Montague, P. R. (2008). The rupture and repair of cooperation in borderline personality disorder. Science, 321(5890), 806810. https://doi.org/10.1126/science.1156902Google Scholar
King-Casas, B., Tomlin, D., Anen, C., Camerer, C. F., Quartz, S. R., & Montague, P. R. (2005). Getting to know you: Reputation and trust in a two-person economic exchange. Science, 308(5718), 7883. https://doi.org/10.1126/science.1108062Google Scholar
Kosfeld, M., Heinrichs, M., Zak, P. J., Fischbacher, U., & Fehr, E. (2005). Oxytocin increases trust in humans. Nature, 435(7042), 673676. https://doi.org/10.1038/nature03701Google Scholar
Krajbich, I., Adolphs, R., Tranel, D., Denburg, N. L., & Camerer, C. F. (2009). Economic games quantify diminished sense of guilt in patients with damage to the prefrontal cortex. Journal of Neuroscience, 29(7), 21882192. https://doi.org/10.1523/JNEUROSCI.5086-08.2009Google Scholar
Krueger, F., Grafman, J., & McCabe, K. (2008). Neural correlates of economic game playing. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1511), 38593874. https://doi.org/10.1098/rstb.2008.0165Google Scholar
Lauharatanahirun, N., Christopoulos, G. I., & King-Casas, B. (2012). Neural computations underlying social risk sensitivity. Frontiers in Human Neuroscience, 6, Article 213. https://doi.org/10.3389/fnhum.2012.00213Google Scholar
Lemmers-Jansen, I. L., Fett, A.-K. J., Hanssen, E., Veltman, D. J., & Krabbendam, L. (2019). Learning to trust: Social feedback normalizes trust behavior in first-episode psychosis and clinical high risk. Psychological Medicine, 49(5), 780790. https://doi.org/10.1017/S003329171800140XGoogle Scholar
Lemmers-Jansen, I. L., Krabbendam, L., Veltman, D. J., & Fett, A.-K. J. (2017). Boys vs. girls: Gender differences in the neural development of trust and reciprocity depend on social context. Developmental Cognitive Neuroscience, 25, 235245. https://doi.org/10.1016/j.dcn.2017.02.001Google Scholar
Leng, G., & Ludwig, M. (2016). Intranasal oxytocin: Myths and delusions. Biological Psychiatry, 79(3), 243250. https://doi.org/10.1016/j.biopsych.2015.05.003Google Scholar
Li, J., Xiao, E., Houser, D., & Montague, P. R. (2009). Neural responses to sanction threats in two-party economic exchange. Proceedings of the National Academy of Sciences, 106(39), 1683516840. https://doi.org/10.1073/pnas.0908855106Google Scholar
McCabe, K., Houser, D., Ryan, L., Smith, V., & Trouard, T. (2001). A functional imaging study of cooperation in two-person reciprocal exchange. Proceedings of the National Academy of Sciences, 98(20), 1183211835. https://doi.org/10.1073/pnas.211415698Google Scholar
McCabe, K. A., Rigdon, M. L., & Smith, V. L. (2003). Positive reciprocity and intentions in trust games. Journal of Economic Behavior & Organization, 52(2), 267275. https://doi.org/10.1016/S0167-2681(03)00003-9Google Scholar
Mitchell, J. P. (2007). Activity in right temporo-parietal junction is not selective for theory-of-mind. Cerebral Cortex, 18(2), 262271. https://doi.org/10.1093/cercor/bhm051Google Scholar
Morishima, Y., Schunk, D., Bruhin, A., Ruff, C. C., & Fehr, E. (2012). Linking brain structure and activation in temporoparietal junction to explain the neurobiology of human altruism. Neuron, 75(1), 7379. https://doi.org/10.1016/j.neuron.2012.05.021Google Scholar
Nave, G., Camerer, C., & McCullough, M. (2015). Does oxytocin increase trust in humans? A critical review of research. Perspectives on Psychological Science, 10(6), 772789. https://doi.org/10.1177/1745691615600138Google Scholar
Nihonsugi, T., Ihara, A., & Haruno, M. (2015). Selective increase of intention-based economic decisions by noninvasive brain stimulation to the dorsolateral prefrontal cortex. Journal of Neuroscience, 35(8), 34123419. https://doi.org/10.1523/JNEUROSCI.3885-14.2015Google Scholar
Ong, D. C., Zaki, J., & Gruber, J. (2017). Increased cooperative behavior across remitted bipolar I disorder and major depression: Insights utilizing a behavioral economic trust game. Journal of Abnormal Psychology, 126(1), 17. https://doi.org/10.1037/abn0000239Google Scholar
Pratt, J. W. (1978). Risk aversion in the small and in the large. In Diamond, P. & Rothschild, M. (Eds.), Uncertainty in economics (pp. 5979). Elsevier.Google Scholar
Preuschoff, K., Bossaerts, P., & Quartz, S. R. (2006). Neural differentiation of expected reward and risk in human subcortical structures. Neuron, 51(3), 381390. https://doi.org/10.1016/j.neuron.2006.06.024Google Scholar
Riedl, R., Mohr, P. N., Kenning, P. H., Davis, F. D., & Heekeren, H. R. (2014). Trusting humans and avatars: A brain imaging study based on evolution theory. Journal of Management Information Systems, 30(4), 83114. https://doi.org/10.2753/MIS0742-1222300404Google Scholar
Robson, S. E., Repetto, L., Gountouna, V.-E., & Nicodemus, K. K. (2020). A review of neuroeconomic gameplay in psychiatric disorders. Molecular Psychiatry, 25(1), 6781. https://doi.org/10.1038/s41380-019-0405-5Google Scholar
Ross, H. E., & Young, L. J. (2009). Oxytocin and the neural mechanisms regulating social cognition and affiliative behavior. Frontiers in Neuroendocrinology, 30(4), 534547. https://doi.org/10.1016/j.yfrne.2009.05.004Google Scholar
Rousseau, D. M., Sitkin, S. B., Burt, R. S., & Camerer, C. (1998). Not so different after all: A cross-discipline view of trust. Academy of Management Review, 23(3), 393404. https://doi.org/10.5465/amr.1998.926617Google Scholar
Schultz, W., Preuschoff, K., Camerer, C., et al. (2008). Explicit neural signals reflecting reward uncertainty. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1511), 38013811. https://doi.org/10.1098/rstb.2008.0152Google Scholar
Schurz, M., Radua, J., Aichhorn, M., Richlan, F., & Perner, J. (2014). Fractionating theory of mind: A meta-analysis of functional brain imaging studies. Neuroscience & Biobehavioral Reviews, 42, 934. https://doi.org/10.1016/j.neubiorev.2014.01.009Google Scholar
Sripada, C. S., Angstadt, M., Banks, S., Nathan, P. J., Liberzon, I., & Phan, K. L. (2009). Functional neuroimaging of mentalizing during the trust game in social anxiety disorder. Neuroreport, 20(11), 984989. https://doi.org/10.1097/WNR.0b013e32832d0a67Google Scholar
Sripada, C., Angstadt, M., Liberzon, I., McCabe, K., & Phan, K. L. (2013). Aberrant reward center response to partner reputation during a social exchange game in generalized social phobia. Depression and Anxiety, 30(4), 353361. https://doi.org/10.1002/da.22091Google Scholar
Stanley, D. A., Sokol-Hessner, P., Fareri, D. S., et al. (2012). Race and reputation: Perceived racial group trustworthiness influences the neural correlates of trust decisions. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1589), 744753. https://doi.org/10.1098/rstb.2011.0300Google Scholar
Tisserand, J.-C. (2014). Ultimatum game: A meta-analysis of the past three decades of experimental research. Proceedings of the International Academic Conferences, Antibes, France, 13, 609609.Google Scholar
Tricomi, E., Rangel, A., Camerer, C. F., & O’Doherty, J. P. (2010). Neural evidence for inequality-averse social preferences. Nature, 463(7284), 10891091. https://doi.org/10.1038/nature08785Google Scholar
Tversky, A., & Kahneman, D. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47(2), 263291. https://doi.org/10.2307/1914185Google Scholar
Tzieropoulos, H. (2013). The trust game in neuroscience: A short review. Social Neuroscience, 8(5), 407416. https://doi.org/10.1080/17470919.2013.832375Google Scholar
Unoka, Z., Seres, I., Aspan, N., Bódi, N., & Kéri, S. (2009). Trust game reveals restricted interpersonal transactions in patients with borderline personality disorder. Journal of Personality Disorders, 23(4), 399409. https://doi.org/10.1521/pedi.2009.23.4.399Google Scholar
Van den Bos, W., Van Dijk, E., Westenberg, M., Rombouts, S. A., & Crone, E. A. (2009). What motivates repayment? Neural correlates of reciprocity in the trust game. Social Cognitive and Affective Neuroscience, 4(3), 294304. https://doi.org/10.1093/scan/nsp009Google Scholar
Van den Bos, W., Van Dijk, E., Westenberg, M., Rombouts, S. A., & Crone, E. A. (2011). Changing brains, changing perspectives: The neurocognitive development of reciprocity. Psychological Science, 22(1), 6070. https://doi.org/10.1177/0956797610391102Google Scholar
Zethraeus, N., Kocoska-Maras, L., Ellingsen, T., Von Schoultz, B., Hirschberg, A. L., & Johannesson, M. (2009). A randomized trial of the effect of estrogen and testosterone on economic behavior. Proceedings of the National Academy of Sciences, 106(16), 65356538. https://doi.org/10.1073/pnas.0812757106Google Scholar

References

Alós-Ferrer, C., & Farolfi, F. (2019). Trust games and beyond. Frontiers in Neuroscience, 13, 887. DOI: https://doi.org/10.3389/fnins.2019.00887Google Scholar
Bailey, P. E., & Leon, T. (2019). A systematic review and meta-analysis of age-related differences in trust. Psychology and Aging, 34(5), 674685. https://doi.org/10.1037/pag0000368Google Scholar
Bellucci, G., Chernyak, S. V., Goodyear, K., Eickhoff, S. B., & Krueger, F. (2017). Neural signatures of trust in reciprocity: A coordinate‐based meta‐analysis. Human Brain Mapping, 38(3), 12331248. https://doi.org/10.1002/hbm.23451Google Scholar
Berg, J., Dickhaut, J., & McCabe, K. (1995). Trust, reciprocity, and social history. Games and Economic Behavior, 10(1), 122142. https://doi.org/10.1006/game.1995.1027Google Scholar
Betts, L. R., & Rotenberg, K. J. (2008). A social relations analysis of children’s trust in their peers across the early years of school. Social Development, 17(4), 10391055. https://doi.org/10.1111/j.1467-9507.2008.00479.xGoogle Scholar
Betts, L. R., Rotenberg, K. J., Petrocchi, S., et al. (2014). An investigation of children’s peer trust across culture: Is the composition of peer trust universal? International Journal of Behavioral Development, 38(1), 3341. https://doi.org/10.1177/0165025413505248Google Scholar
Blakemore, S.-J. (2008). The social brain in adolescence. Nature Reviews Neuroscience, 9(4), 267277. https://doi.org/10.1038/nrn2353Google Scholar
Blakemore, S.-J. (2012). Development of the social brain in adolescence. Journal of the Royal Society of Medicine, 105(3), 111116. https://doi.org/10.1258/jrsm.2011.110221Google Scholar
Bosco, F. M., Gabbatore, I., & Tirassa, M. (2014). A broad assessment of theory of mind in adolescence: The complexity of mindreading. Consciousness and Cognition, 24, 8497. https://doi.org/10.1016/j.concog.2014.01.003Google Scholar
Chan, D., Hamamura, T., Li, L. M. W., & Zhang, X. (2017). Is trusting others related to better health? An investigation of older adults across six non-western countries. Journal of Cross-Cultural Psychology, 48(8), 12881301. https://doi.org/10.1177/0022022117722632Google Scholar
Chaudhuri, A., Paichayontvijit, T., & Shen, L. (2013). Gender differences in trust and trustworthiness: Individuals, single sex and mixed sex groups. Journal of Economic Psychology, 34, 181194. https://doi.org/10.1016/j.joep.2012.09.013Google Scholar
Chaudhuri, A., & Sbai, E. (2011). Gender differences in trust and reciprocity in repeated gift exchange games. New Zealand Economic Papers, 45(1–2), 8195. https://doi.org/10.1080/00779954.2011.556072Google Scholar
Chin, J.-C. (2014). Young children’s trust beliefs in peers: Relations to social competence and interactive behaviors in a peer group. Early Education and Development, 25(5), 601618. https://doi.org/10.1080/10409289.2013.836698Google Scholar
Corriveau, K. H., Harris, P. L., Meins, E., et al. (2009). Young children’s trust in their mother’s claims: Longitudinal links with attachment security in infancy. Child Development, 80(3), 750761. https://doi.org/10.1111/j.1467-8624.2009.01295.xGoogle Scholar
Crone, E. A., Poldrack, R. A., & Durston, S. (2010). Challenges and methods in developmental neuroimaging. Human Brain Mapping, 31(6), 835837. https://doi.org/10.1002/hbm.21053Google Scholar
Delgado, M. R., Frank, R. H., & Phelps, E. A. (2005). Perceptions of moral character modulate the neural systems of reward during the trust game. Nature Neuroscience, 8(11), 16111618. https://doi.org/10.1038/nn1575Google Scholar
Derks, J., Lee, N. C., & Krabbendam, L. (2014). Adolescent trust and trustworthiness: Role of gender and social value orientation. Journal of Adolescence, 37(8), 13791386. https://doi.org/10.1016/j.adolescence.2014.09.014Google Scholar
Dumontheil, I., Apperly, I. A., & Blakemore, S. J. (2010). Online usage of theory of mind continues to develop in late adolescence. Developmental Science, 13(2), 331338. https://doi.org/10.1111/j.1467-7687.2009.00888.xGoogle Scholar
Eisenberg, N., Cumberland, A., Guthrie, I. K., Murphy, B. C., & Shepard, S. A. (2005). Age changes in prosocial responding and moral reasoning in adolescence and early adulthood. Journal of Research on Adolescence, 15(3), 235260. https://doi.org/10.1111/j.1532-7795.2005.00095.xGoogle Scholar
Erdley, C. A., & Day, H. J. (2017). Friendship in childhood and adolescence. In Hojjat, M. & Moyer, A. (Eds.), The psychology of friendship (pp. 319). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780190222024.001.0001Google Scholar
Erikson, E. H. (1963). Childhood and society. W. W. Norton & Company. https://doi.org/10.30965/9783657768387_048Google Scholar
Evans, A. M., & Krueger, J. I. (2009). The psychology (and economics) of trust. Social and Personality Psychology Compass, 3(6), 10031017. https://doi.org/10.1111/j.1751-9004.2009.00232.xGoogle Scholar
Fett, A.-K. J., Gromann, P. M., Giampietro, V., Shergill, S. S., & Krabbendam, L. (2014). Default distrust? An fMRI investigation of the neural development of trust and cooperation. Social Cognitive and Affective Neuroscience, 9(4), 395402. https://doi.org/10.1093/scan/nss144Google Scholar
Fett, A.-K. J., Shergill, S. S., Gromann, P. M., et al. (2014). Trust and social reciprocity in adolescence: A matter of perspective-taking. Journal of Adolescence, 37(2), 175184. https://doi.org/10.1016/j.adolescence.2013.11.011Google Scholar
Garbarino, E., & Slonim, R. (2009). The robustness of trust and reciprocity across a heterogeneous U.S. population. Journal of Economic Behavior & Organization, 69(3), 226240. https://doi.org/10.1016/j.jebo.2007.06.010Google Scholar
Güroğlu, B., Van den Bos, W., & Crone, E. A. (2014). Sharing and giving across adolescence: An experimental study examining the development of prosocial behavior. Frontiers in Psychology, 5, 113. https://doi.org/10.3389/fpsyg.2014.00291Google Scholar
Haselhuhn, M. P., Kennedy, J. A., Kray, L. J., Van Zant, A. B., & Schweitzer, M. E. (2015). Gender differences in trust dynamics: Women trust more than men following a trust violation. Journal of Experimental Social Psychology, 56, 104109. https://doi.org/10.1016/j.jesp.2014.09.007Google Scholar
Hill, C. A., & O’Hara, E. A. (2006). A cognitive theory of trust. Washington University Law Review, 84, 17171796. https://doi.org/10.2139/ssrn.869423Google Scholar
Holm, H., & Nystedt, P. (2005). Intra-generational trust: A semi-experimental study of trust among different generations. Journal of Economic Behavior & Organization, 58(3), 403419. https://doi.org/10.1016/j.jebo.2003.10.013Google Scholar
Johnson, N. D., & Mislin, A. A. (2011). Trust games: A meta-analysis. Journal of Economic Psychology, 32(5), 865889. https://doi.org/10.1016/j.joep.2011.05.007Google Scholar
King-Casas, B., Tomlin, D., Anen, C., Camerer, C. F., Quartz, S. R., & Montague, P. R. (2005). Getting to know you: Reputation and trust in a two-person economic exchange. Science, 308(5718), 7883. https://doi.org/10.1126/science.1108062Google Scholar
Kocher, M. G. (2017). How trust in social dilemmas evolves with age. In Van Lange, P. A. M., Rockenbach, B., & Yamagishi, T. (Eds.), Trust in social dilemmas (pp. 101118). Oxford University Press. https://doi.org/10.1093/oso/9780190630782.003.0006Google Scholar
Krueger, F., & Meyer-Lindenberg, A. (2019). Toward a model of interpersonal trust drawn from neuroscience, psychology, and economics. Trends in neurosciences, 42(2), 92101. DOI: https://doi.org/10.1016/j.tins.2018.10.004Google Scholar
Ledyard, J. O. (1995). Public goods: A survey of experimental research. In Kagel, J. & Roth, A. (Eds.), Handbook of experimental economics (pp. 111194). Princeton University Press. https://doi.org/10.2307/j.ctvzsmff5Google Scholar
Lee, N. C., Jolles, J., & Krabbendam, L. (2016). Social information influences trust behaviour in adolescents. Journal of Adolescence, 46, 6675. https://doi.org/10.1016/j.adolescence.2015.10.021Google Scholar
Lemmers-Jansen, I. L., Fett, A.-K. J., Shergill, S. S., Van Kesteren, M. T., & Krabbendam, L. (2019). Girls-boys: An investigation of gender differences in the behavioral and neural mechanisms of trust and reciprocity in adolescence. Frontiers in Human Neuroscience, 13, 112. https://doi.org/10.3389/fnhum.2019.00257Google Scholar
Lemmers-Jansen, I. L., Krabbendam, L., Veltman, D. J., & Fett, A.-K. J. (2017). Boys vs. girls: Gender differences in the neural development of trust and reciprocity depend on social context. Developmental Cognitive Neuroscience, 25, 235245. https://doi.org/10.1016/j.dcn.2017.02.001Google Scholar
Lewis, J. D., & Weigert, A. (1985). Trust as a social reality. Social Forces, 63(4), 967985. https://doi.org/10.1093/sf/63.4.967Google Scholar
Li, T., & Fung, H. H. (2013). Age differences in trust: An investigation across 38 countries. Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 68(3), 347355. https://doi.org/10.1093/geronb/gbs072Google Scholar
Luna, B., Velanova, K., & Geier, C. F. (2010). Methodological approaches in developmental neuroimaging studies. Human Brain Mapping, 31(6), 863871. https://doi.org/10.1002/hbm.21073Google Scholar
Malti, T., Averdijk, M., Zuffianò, A., et al. (2016). Children’s trust and the development of prosocial behavior. International Journal of Behavioral Development, 40(3), 262270. https://doi.org/10.1177/0165025415584628Google Scholar
Murtin, F., Fleischer, L., Siegerink, V., et al. (2018). Trust and its determinants: Evidence from the Trustlab experiment. OECD Statistics Working Papers, 2018/02. https://doi.org/10.1787/869ef2ec-enGoogle Scholar
Pfeifer, J. H., & Blakemore, S.-J. (2012). Adolescent social cognitive and affective neuroscience: Past, present, and future. Social Cognitive and Affective Neuroscience, 7(1), 110. https://doi.org/10.1093/scan/nsr099Google Scholar
Poulin, M. J., & Haase, C. M. (2015). Growing to trust: Evidence that trust increases and sustains well-being across the life span. Social Psychological and Personality Science, 6(6), 614621. https://doi.org/10.1177/1948550615574301Google Scholar
Poundstone, W. (1992). Prisoner’s dilemma. Doubleday.Google Scholar
Rasmussen, E. C., & Gutchess, A. (2019). Can’t read my broker face: Learning about trustworthiness with age. The Journals of Gerontology: Series B, 74(1), 8286. https://doi.org/10.1093/geronb/gby012Google Scholar
Rotenberg, K. J., Petrocchi, S., Lecciso, F., & Marchetti, A. (2013). Children’s trust beliefs in others and trusting behavior in peer interaction. Child Development Research, 2013, 18. https://doi.org/10.1155/2013/806597Google Scholar
Saunders, M. N., Dietz, G., & Thornhill, A. (2014). Trust and distrust: Polar opposites, or independent but co-existing? Human Relations, 67(6), 639665. https://doi.org/10.1177/0018726713500831Google Scholar
Schiffer, A.-M., & Schubotz, R. I. (2011). Caudate nucleus signals for breaches of expectation in a movement observation paradigm. Frontiers in Human Neuroscience, 5, 112. https://doi.org/10.3389/fnhum.2011.00038Google Scholar
Steinberg, L. (2008). A social neuroscience perspective on adolescent risk-taking. Developmental Review, 28(1), 78106. https://doi.org/10.1016/j.dr.2007.08.002Google Scholar
Sutter, M., & Kocher, M. G. (2007). Trust and trustworthiness across different age groups. Games and Economic Behavior, 59(2), 364382. https://doi.org/10.1016/j.geb.2006.07.006Google Scholar
Takahashi, H., Shen, J., & Ogawa, K. (2020). Gender-specific reference-dependent preferences in the experimental trust game. Evolutionary and Institutional Economics Review, 17, 2538. https://doi.org/10.1007/s40844–019-00155-zGoogle Scholar
Thompson, R. A. (2008). Early attachment and later development: Familiar questions, new answers. In Cassidy, J. & Shaver, P. R. (Eds.), Handbook of attachment: Theory, research, and clinical applications (pp. 348365). The Guilford Press. https://doi.org/10.1002/imhj.21730Google Scholar
Tzieropoulos, H. (2013). The trust game in neuroscience: A short review. Social Neuroscience, 8(5), 407416. https://doi.org/10.1080/17470919.2013.832375Google Scholar
Van de Groep, S., Meuwese, R., Zanolie, K., Güroğlu, B., & Crone, E. A. (2018). Developmental changes and individual differences in trust and reciprocity in adolescence. Journal of Research on Adolescence, 30, 192208. https://doi.org/10.1111/jora.12459Google Scholar
Van den Akker, O., Van Vugt, M., Van Assen, M. A., & Wicherts, J. M. (2018). Sex differences in trust and trustworthiness: A meta-analysis of the trust game and the gift-exchange game. Pre-print on PsyArXiv.Google Scholar
Van den Bos, W., Van Dijk, E., & Crone, E. A. (2012). Learning whom to trust in repeated social interactions: A developmental perspective. Group Processes & Intergroup Relations, 15(2), 243256. https://doi.org/10.1177/1368430211418698Google Scholar
Van den Bos, W., Van Dijk, E., Westenberg, M., Rombouts, S. A., & Crone, E. A. (2011). Changing brains, changing perspectives: The neurocognitive development of reciprocity. Psychological Science, 22(1), 6070. https://doi.org/10.1177/0956797610391102Google Scholar
Van den Bos, W., Westenberg, M., Van Dijk, E., & Crone, E. A. (2010). Development of trust and reciprocity in adolescence. Cognitive Development, 25(1), 90102. https://doi.org/10.1016/j.cogdev.2009.07.004Google Scholar
Van Hoorn, J., Shablack, H., Lindquist, K. A., & Telzer, E. H. (2019). Incorporating the social context into neurocognitive models of adolescent decision making: A neuroimaging meta-analysis. Neuroscience & Biobehavioral Reviews, 101, 129145. https://doi.org/10.1016/j.neubiorev.2018.12.024Google Scholar
Vandevivere, E., Bosmans, G., Roels, S., Dujardin, A., & Braet, C. (2018). State trust in middle childhood: An experimental manipulation of maternal support. Journal of Child and Family Studies, 27(4), 12521263. https://doi.org/10.1007/s10826–017-0954-7Google Scholar
Wu, Y., Hall, A. S., Siehl, S., Grafman, J., & Krueger, F. (2020). Neural signatures of gender differences in interpersonal trust. Frontiers in Human Neuroscience, 14, 111. https://doi.org/10.3389/fnhum.2020.00225Google Scholar

References

Aimone, J. A., Houser, D., & Weber, B. (2014). Neural signatures of betrayal aversion: An fMRI study of trust. Proceedings. Biological Sciences, 281(1782), 16. https://doi.org/10.1098/rspb.2013.2127Google Scholar
Andellini, M., Cannatà, V., Gazzellini, S., Bernardi, B., & Napolitano, A. (2015). Test-retest reliability of graph metrics of resting state MRI functional brain networks: A review. Journal of Neuroscience Methods, 253, 183192. https://doi.org/10.1016/j.jneumeth.2015.05.020Google Scholar
Azeez, A. K., & Biswal, B. B. (2017). A review of resting-state analysis methods. Neuroimaging Clinics of North America, 27(4), 581592. https://doi.org/10.1016/j.nic.2017.06.001Google Scholar
Baumgartner, T., Heinrichs, M., Vonlanthen, A., Fischbacher, U., & Fehr, E. (2008). Oxytocin shapes the neural circuitry of trust and trust adaptation in humans. Neuron, 58(4), 639650. https://doi.org/10.1016/j.neuron.2008.04.009Google Scholar
Beaty, R. E., Kenett, Y. N., Christensen, A. P., et al. (2018). Robust prediction of individual creative ability from brain functional connectivity. Proceedings of the National Academy of Sciences, 115(5), 10871092. https://doi.org/10.1073/pnas.1713532115Google Scholar
Belfi, A. M., Koscik, T. R., & Tranel, D. (2015). Damage to the insula is associated with abnormal interpersonal trust. Neuropsychologia, 71, 165172. https://doi.org/10.1016/j.neuropsychologia.2015.04.003Google Scholar
Bellucci, G., Chernyak, S. V., Goodyear, K., Eickhoff, S. B., & Krueger, F. (2017). Neural signatures of trust in reciprocity: A coordinate-based meta-analysis. Human Brain Mapping, 38(3), 12331248. https://doi.org/10.1002/hbm.23451Google Scholar
Bellucci, G., Feng, C., Camilleri, J., Eickhoff, S. B., & Krueger, F. (2018). The role of the anterior insula in social norm compliance and enforcement: Evidence from coordinate-based and functional connectivity meta-analyses. Neuroscience & Biobehavioral Reviews, 92, 378389. https://doi.org/10.1016/j.neubiorev.2018.06.024Google Scholar
Bellucci, G., Hahn, T., Deshpande, G., & Krueger, F. (2019). Functional connectivity of specific resting-state networks predicts trust and reciprocity in the trust game. Cognitive, Affective & Behavioral Neuroscience, 19(1), 165176. https://doi.org/10.3758/s13415-018-00654-3Google Scholar
Bellucci, G., Molter, F., & Park, S. Q. (2019). Neural representations of honesty predict future trust behavior. Nature Communications, 10(1), Article 5184. https://doi.org/10.1038/s41467-019-13261-8Google Scholar
Berg, J., Dickhaut, J., & McCabe, K. (1995). Trust, reciprocity, and social history. Games and Economic Behavior, 10(1), 122142. https://doi.org/10.1006/game.1995.1027Google Scholar
Biswal, B., Zerrin Yetkin, F., Haughton, V. M., & Hyde, J. S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic Resonance in Medicine, 34(4), 537541. https://doi.org/10.1002/mrm.1910340409Google Scholar
Bohnet, I., Greig, F., Herrmann, B., & Zeckhauser, R. (2008). Betrayal aversion: Evidence from Brazil, China, Oman, Switzerland, Turkey, and the United States. American Economic Review, 98(1), 294310. https://doi.org/10.1257/aer.98.1.294Google Scholar
Bohnet, I., & Zeckhauser, R. (2004). Trust, risk and betrayal. Journal of Economic Behavior & Organization, 55(4), 467484. https://doi.org/10.1016/j.jebo.2003.11.004Google Scholar
Boksem, M. A. S., Mehta, P. H., Van den Bergh, B., et al. (2013). Testosterone inhibits trust but promotes reciprocity. Psychological Science, 24(11), 23062314. https://doi.org/10.1177/0956797613495063Google Scholar
Bos, P. A., Terburg, D., & Van Honk, J. (2010). Testosterone decreases trust in socially naive humans. Proceedings of the National Academy of Sciences, 107(22), 99919995. https://doi.org/10.1073/pnas.0911700107Google Scholar
Bressler, S. L., & Menon, V. (2010). Large-scale brain networks in cognition: Emerging methods and principles. Trends in Cognitive Sciences, 14(6), 277290. https://doi.org/10.1016/j.tics.2010.04.004Google Scholar
Bush, K., & Cisler, J. (2013). Decoding neural events from fMRI BOLD signal: A comparison of existing approaches and development of a new algorithm. Magnetic Resonance Imaging, 31(6), 976989. https://doi.org/10.1016/j.mri.2013.03.015Google Scholar
Button, K. S., Ioannidis, J. P. A., Mokrysz, C., et al. (2013). Power failure: Why small sample size undermines the reliability of neuroscience. Nature Reviews Neuroscience, 14(5), 365376. https://doi.org/10.1038/nrn3475Google Scholar
Camerer, C., & Weigelt, K. (1988). Experimental tests of a sequential equilibrium reputation model. Econometrica, 56(1), 136. https://doi.org/10.2307/1911840Google Scholar
Cole, D. M., Smith, S. M., & Beckmann, C. F. (2010). Advances and pitfalls in the analysis and interpretation of resting-state fMRI data. Frontiers in Systems Neuroscience, 4(8), 18. https://doi.org/10.3389/fnsys.2010.00008Google Scholar
Cole, M. W., Ito, T., Bassett, D. S., & Schultz, D. H. (2016). Activity flow over resting-state networks shapes cognitive task activations. Nature Neuroscience, 19(12), 17181726. https://doi.org/10.1038/nn.4406Google Scholar
Crawford, J. R., & Garthwaite, P. H. (2008). On the “optimal” size for normative samples in neuropsychology: Capturing the uncertainty when normative data are used to quantify the standing of a neuropsychological test score. Child Neuropsychology, 14(2), 99117. https://doi.org/10.1080/09297040801894709Google Scholar
Cuthbert, B. N., & Insel, T. R. (2013). Toward the future of psychiatric diagnosis: The seven pillars of RDoC. BMC Medicine, 11(1), Article 126. https://doi.org/10.1186/1741-7015-11-126Google Scholar
Damoiseaux, J. S., Rombouts, S. A. R. B., Barkhof, F., et al. (2006). Consistent resting-state networks across healthy subjects. Proceedings of the National Academy of Sciences, 103(37), 1384813853. https://doi.org/10.1073/pnas.0601417103Google Scholar
Delgado, M. R., Frank, R. H., & Phelps, E. A. (2005). Perceptions of moral character modulate the neural systems of reward during the trust game. Nature Neuroscience, 8(11), 16111618. https://doi.org/10.1038/nn1575Google Scholar
Dosenbach, N. U. F., Nardos, B., Cohen, A. L., et al. (2010). Prediction of individual brain maturity using fMRI. Science, 329(5997), 13581361. https://doi.org/10.1126/science.1194144Google Scholar
Dubois, J., & Adolphs, R. (2016). Building a science of individual differences from fMRI. Trends in Cognitive Sciences, 20(6), 425443. https://doi.org/10.1016/j.tics.2016.03.014Google Scholar
Dubois, J., Galdi, P., Han, Y., Paul, L. K., & Adolphs, R. (2018). Resting-state functional brain connectivity best predicts the personality dimension of openness to experience. Personality Neuroscience, 1, Article e6. https://doi.org/10.1017/pen.2018.8Google Scholar
Durnez, J., Blair, R., & Poldrack, R. A. (2017). Neurodesign: Optimal experimental designs for task fMRI [Preprint]. Neuroscience. https://doi.org/10.1101/119594Google Scholar
Eckel, C. C., & Wilson, R. K. (2004). Is trust a risky decision? Journal of Economic Behavior & Organization, 55(4), 447465. https://doi.org/10.1016/j.jebo.2003.11.003Google Scholar
Engelmann, J. B., Meyer, F., Ruff, C. C., & Fehr, E. (2019). The neural circuitry of affect-induced distortions of trust. Science Advances, 5(3), Article eaau3413. https://doi.org/10.1126/sciadv.aau3413Google Scholar
Fareri, D. S., Chang, L. J., & Delgado, M. R. (2012). Effects of direct social experience on trust decisions and neural reward circuitry. Frontiers in Neuroscience, 6, Article 148. https://doi.org/10.3389/fnins.2012.00148Google Scholar
Fehr, E. (2009). On the economics and biology of trust. Journal of the European Economic Association, 7(2–3), 235266. https://doi.org/10.1162/JEEA.2009.7.2-3.235Google Scholar
Feng, C., Zhu, Z., Cui, Z., et al. (2020). Prediction of trust propensity from intrinsic brain morphology and functional connectome. Human Brain Mapping, Article hbm.25215. https://doi.org/10.1002/hbm.25215Google Scholar
Feng, C., Zhu, Z., Gu, R., Wu, X., Luo, Y.-J., & Krueger, F. (2018). Resting-state functional connectivity underlying costly punishment: A machine-learning approach. Neuroscience, 385, 2537. https://doi.org/10.1016/j.neuroscience.2018.05.052Google Scholar
Fett, A.-K. J., Shergill, S. S., Gromann, P. M., et al. (2014). Trust and social reciprocity in adolescence: A matter of perspective-taking. Journal of Adolescence, 37(2), 175184. https://doi.org/10.1016/j.adolescence.2013.11.011Google Scholar
Fett, A.-K. J., Shergill, S. S., Joyce, D. W., et al. (2012). To trust or not to trust: The dynamics of social interaction in psychosis. Brain, 135(3), 976984. https://doi.org/10.1093/brain/awr359Google Scholar
Finn, E. S., Scheinost, D., Finn, D. M., Shen, X., Papademetris, X., & Constable, R. T. (2017). Can brain state be manipulated to emphasize individual differences in functional connectivity? NeuroImage, 160, 140151. https://doi.org/10.1016/j.neuroimage.2017.03.064Google Scholar
Fouragnan, E., Chierchia, G., Greiner, S., Neveu, R., Avesani, P., & Coricelli, G. (2013). Reputational priors magnify striatal responses to violations of trust. The Journal of Neuroscience, 33(8), Article 3602. https://doi.org/10.1523/JNEUROSCI.3086-12.2013Google Scholar
Fox, M. D., & Raichle, M. E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews Neuroscience, 8(9), 700711. https://doi.org/10.1038/nrn2201Google Scholar
Friston, K. J., Frith, C. D., Turner, R., & Frackowiak, R. S. J. (1995). Characterizing evoked hemodynamics with fMRI. NeuroImage, 2(2), 157165. https://doi.org/10.1006/nimg.1995.1018Google Scholar
Friston, K. J., Li, B., Daunizeau, J., & Stephan, K. E. (2011). Network discovery with DCM. NeuroImage, 56(3), 12021221. https://doi.org/10.1016/j.neuroimage.2010.12.039Google Scholar
Fu, C., Yao, X., Yang, X., Zheng, L., Li, J., & Wang, Y. (2019). Trust game database: Behavioral and EEG data from two trust games. Frontiers in Psychology, 10, Article 2656. https://doi.org/10.3389/fpsyg.2019.02656Google Scholar
Gabrieli, J. D. E., Ghosh, S. S., & Whitfield-Gabrieli, S. (2015). Prediction as a humanitarian and pragmatic contribution from human cognitive neuroscience. Neuron, 85(1), 1126. https://doi.org/10.1016/j.neuron.2014.10.047Google Scholar
Gallagher, H. L., & Frith, C. D. (2003). Functional imaging of “theory of mind.” Trends in Cognitive Sciences, 7(2), 7783. https://doi.org/10.1016/S1364-6613(02)00025-6Google Scholar
Greene, A. S., Gao, S., Scheinost, D., & Constable, R. T. (2018). Task-induced brain state manipulation improves prediction of individual traits. Nature Communications, 9(1), Article 2807. https://doi.org/10.1038/s41467-018-04920-3Google Scholar
Hahn, T., Notebaert, K., Anderl, C., Reicherts, P., et al. (2015). Reliance on functional resting-state network for stable task control predicts behavioral tendency for cooperation. NeuroImage, 118, 231236. https://doi.org/10.1016/j.neuroimage.2015.05.093Google Scholar
Hahn, T., Notebaert, K., Anderl, C., Teckentrup, V., Kaßecker, A., & Windmann, S. (2015). How to trust a perfect stranger: Predicting initial trust behavior from resting-state brain-electrical connectivity. Social Cognitive and Affective Neuroscience, 10(6), 809813. https://doi.org/10.1093/scan/nsu122Google Scholar
Haxby, J. V. (2012). Multivariate pattern analysis of fMRI: The early beginnings. NeuroImage, 62(2), 852855. https://doi.org/10.1016/j.neuroimage.2012.03.016Google Scholar
Heine, L., Soddu, A., Gómez, F., et al. (2012). Resting state networks and consciousness. Frontiers in Psychology, 3, Article 295. https://doi.org/10.3389/fpsyg.2012.00295Google Scholar
Hollerman, J. R., & Schultz, W. (1998). Dopamine neurons report an error in the temporal prediction of reward during learning. Nature Neuroscience, 1(4), 304309. https://doi.org/10.1038/1124Google Scholar
Hsu, W.-T., Rosenberg, M. D., Scheinost, D., Constable, R. T., & Chun, M. M. (2018). Resting-state functional connectivity predicts neuroticism and extraversion in novel individuals. Social Cognitive and Affective Neuroscience, 13(2), 224232. https://doi.org/10.1093/scan/nsy002Google Scholar
Hughes, B. L., Ambady, N., & Zaki, J. (2017). Trusting outgroup, but not ingroup members, requires control: Neural and behavioral evidence. Social Cognitive and Affective Neuroscience, 12(3), 372381. https://doi.org/10.1093/scan/nsw139Google Scholar
Joel, D., Niv, Y., & Ruppin, E. (2002). Actor–critic models of the basal ganglia: New anatomical and computational perspectives. Neural Networks, 15(4–6), 535547. https://doi.org/10.1016/S0893-6080(02)00047-3Google Scholar
Johnson, N. D., & Mislin, A. A. (2011). Trust games: A meta-analysis. Journal of Economic Psychology, 32(5), 865889. https://doi.org/10.1016/j.joep.2011.05.007Google Scholar
King-Casas, B., Sharp, C., Lomax-Bream, L., Lohrenz, T., Fonagy, P., & Montague, P. R. (2008). The rupture and repair of cooperation in borderline personality disorder. Science, 321(5890), 806810. https://doi.org/10.1126/science.1156902Google Scholar
King-Casas, B., Tomlin, D., Anen, C., Camerer, C. F., Quartz, S. R., & Read Montague, P. (2005). Getting to know you: Reputation and trust in a two-person economic exchange. Science, 308(5718), 7883. https://doi.org/10.1126/science.1108062Google Scholar
Koscik, T. R., & Tranel, D. (2011). The human amygdala is necessary for developing and expressing normal interpersonal trust. Neuropsychologia, 49(4), 602611. https://doi.org/10.1016/j.neuropsychologia.2010.09.023Google Scholar
Kosfeld, M., Heinrichs, M., Zak, P. J., Fischbacher, U., & Fehr, E. (2005). Oxytocin increases trust in humans. Nature, 435(7042), 673676. https://doi.org/10.1038/nature03701Google Scholar
Krueger, F., McCabe, K., Moll, J., et al. (2007). Neural correlates of trust. Proceedings of the National Academy of Sciences, 104(50), 2008420089. https://doi.org/10.1073/pnas.0710103104Google Scholar
Krueger, F., & Meyer-Lindenberg, A. (2019). Toward a model of interpersonal trust drawn from neuroscience, psychology, and economics. Trends in Neurosciences, 42(2), 92101. https://doi.org/10.1016/j.tins.2018.10.004Google Scholar
Lee, M. H., Smyser, C. D., & Shimony, J. S. (2013). Resting-state fMRI: A review of methods and clinical applications. American Journal of Neuroradiology, 34(10), 18661872. https://doi.org/10.3174/ajnr.A3263Google Scholar
Lemmers-Jansen, I. L. J., Fett, A.-K. J., Hanssen, E., Veltman, D. J., & Krabbendam, L. (2019). Learning to trust: Social feedback normalizes trust behavior in first-episode psychosis and clinical high risk. Psychological Medicine, 49(5), 780790. https://doi.org/10.1017/S003329171800140XGoogle Scholar
Li, N., Ma, N., Liu, Y., et al. (2013). Resting-state functional connectivity predicts impulsivity in economic decision-making. Journal of Neuroscience, 33(11), 48864895. https://doi.org/10.1523/JNEUROSCI.1342-12.2013Google Scholar
Linden, D. E. J. (2012). The challenges and promise of neuroimaging in psychiatry. Neuron, 73(1), 822. https://doi.org/10.1016/j.neuron.2011.12.014Google Scholar
Lo, A., Chernoff, H., Zheng, T., & Lo, S.-H. (2015). Why significant variables aren’t automatically good predictors. Proceedings of the National Academy of Sciences, 112(45), 1389213897. https://doi.org/10.1073/pnas.1518285112Google Scholar
Logothetis, N. K. (2008). What we can do and what we cannot do with fMRI. Nature, 453(7197), 869878. https://doi.org/10.1038/nature06976Google Scholar
Lu, X., Li, T., Xia, Z., et al. (2019). Connectome‐based model predicts individual differences in propensity to trust. Human Brain Mapping, 40(6), 19421954. https://doi.org/10.1002/hbm.24503Google Scholar
Montague, P. (2002). Hyperscanning: Simultaneous fMRI during linked social interactions. NeuroImage, 16(4), 11591164. https://doi.org/10.1006/nimg.2002.1150Google Scholar
Moretto, G., Sellitto, M., & di Pellegrino, G. (2013). Investment and repayment in a trust game after ventromedial prefrontal damage. Frontiers in Human Neuroscience, 7, Article 593. https://doi.org/10.3389/fnhum.2013.00593Google Scholar
Mwansisya, T. E., Hu, A., Li, Y., et al. (2017). Task and resting-state fMRI studies in first-episode schizophrenia: A systematic review. Schizophrenia Research, 189, 918. https://doi.org/10.1016/j.schres.2017.02.026Google Scholar
Nave, G., Camerer, C., & McCullough, M. (2015). Does oxytocin increase trust in humans? A critical review of research. Perspectives on Psychological Science, 10(6), 772789. https://doi.org/10.1177/1745691615600138Google Scholar
Nostro, A. D., Müller, V. I., Varikuti, D. P., et al. (2018). Predicting personality from network-based resting-state functional connectivity. Brain Structure and Function, 223(6), 26992719. https://doi.org/10.1007/s00429-018-1651-zGoogle Scholar
O’Doherty, J., Dayan, P., Schultz, J., Deichmann, R., Friston, K., & Dolan, R. J. (2004). Dissociable roles of ventral and dorsal striatum in instrumental conditioning. Science, 304(5669), 452454. https://doi.org/10.1126/science.1094285Google Scholar
Ogawa, S., Tank, D. W., Menon, R., et al. (1992). Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic resonance imaging. Proceedings of the National Academy of Sciences, 89(13), 59515955. https://doi.org/10.1073/pnas.89.13.5951Google Scholar
O’Reilly, J. X., Woolrich, M. W., Behrens, T. E. J., Smith, S. M., & Johansen-Berg, H. (2012). Tools of the trade: Psychophysiological interactions and functional connectivity. Social Cognitive and Affective Neuroscience, 7(5), 604609. https://doi.org/10.1093/scan/nss055Google Scholar
Orrù, G., Pettersson-Yeo, W., Marquand, A. F., Sartori, G., & Mechelli, A. (2012). Using Support Vector Machine to identify imaging biomarkers of neurological and psychiatric disease: A critical review. Neuroscience & Biobehavioral Reviews, 36(4), 11401152. https://doi.org/10.1016/j.neubiorev.2012.01.004Google Scholar
Patanaik, A., Tandi, J., Ong, J. L., Wang, C., Zhou, J., & Chee, M. W. L. (2018). Dynamic functional connectivity and its behavioral correlates beyond vigilance. NeuroImage, 177, 110. https://doi.org/10.1016/j.neuroimage.2018.04.049Google Scholar
Patriat, R., Molloy, E. K., Meier, T. B., et al. (2013). The effect of resting condition on resting-state fMRI reliability and consistency: A comparison between resting with eyes open, closed, and fixated. NeuroImage, 78, 463473. https://doi.org/10.1016/j.neuroimage.2013.04.013Google Scholar
Petersen, S. E., & Dubis, J. W. (2011). The mixed block/event design. NeuroImage, 62(2), 11771184. https://doi.org/10.1016/j.neuroimage.2011.09.084Google Scholar
Plitt, M., Barnes, K. A., Wallace, G. L., Kenworthy, L., & Martin, A. (2015). Resting-state functional connectivity predicts longitudinal change in autistic traits and adaptive functioning in autism. Proceedings of the National Academy of Sciences, 112(48), E6699E6706. https://doi.org/10.1073/pnas.1510098112Google Scholar
Power, J. D., Cohen, A. L., Nelson, S. M., et al. (2011). Functional network organization of the human brain. Neuron, 72(4), 665678. https://doi.org/10.1016/j.neuron.2011.09.006Google Scholar
Raichle, M. E., & Snyder, A. Z. (2007). A default mode of brain function: A brief history of an evolving idea. NeuroImage, 37(4), 10831090. https://doi.org/10.1016/j.neuroimage.2007.02.041Google Scholar
Reggente, N., Moody, T. D., Morfini, F., et al. (2018). Multivariate resting-state functional connectivity predicts response to cognitive behavioral therapy in obsessive–compulsive disorder. Proceedings of the National Academy of Sciences, 115(9), 22222227. https://doi.org/10.1073/pnas.1716686115Google Scholar
Riedl, R., & Javor, A. (2012). The biology of trust: Integrating evidence from genetics, endocrinology, and functional brain imaging. Journal of Neuroscience, Psychology, and Economics, 5(2), 6391. https://doi.org/10.1037/a0026318Google Scholar
Rilling, J. K., & Sanfey, A. G. (2011). The neuroscience of social decision making. Annual Review of Psychology, 62(1), 2348. https://doi.org/10.1146/annurev.psych.121208.131647Google Scholar
Roebroeck, A., Formisano, E., & Goebel, R. (2005). Mapping directed influence over the brain using Granger causality and fMRI. NeuroImage, 25(1), 230242. https://doi.org/10.1016/j.neuroimage.2004.11.017Google Scholar
Rosazza, C., & Minati, L. (2011). Resting-state brain networks: Literature review and clinical applications. Neurological Sciences, 32(5), 773785. https://doi.org/10.1007/s10072-011-0636-yGoogle Scholar
Seppänen, R., Blomqvist, K., & Sundqvist, S. (2007). Measuring inter-organizational trust: A critical review of the empirical research in 1990–2003. Industrial Marketing Management, 36(2), 249265. https://doi.org/10.1016/j.indmarman.2005.09.003Google Scholar
Smitha, K., Akhil Raja, K., Arun, K., et al. (2017). Resting state fMRI: A review on methods in resting state connectivity analysis and resting state networks. The Neuroradiology Journal, 30(4), 305317. https://doi.org/10.1177/1971400917697342Google Scholar
Sporns, O., Honey, C. J., & Kötter, R. (2007). Identification and classification of hubs in brain networks. PLoS ONE, 2(10), Article e1049. https://doi.org/10.1371/journal.pone.0001049Google Scholar
Spreng, R. N., Mar, R. A., & Kim, A. S. N. (2009). The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode: A quantitative meta-analysis. Journal of Cognitive Neuroscience, 21(3), 489510. https://doi.org/10.1162/jocn.2008.21029Google Scholar
Sun, H., Verbeke, W. J. M. I., Pozharliev, R., Bagozzi, R. P., Babiloni, F., & Wang, L. (2019). Framing a trust game as a power game greatly affects interbrain synchronicity between trustor and trustee. Social Neuroscience, 14(6), 635648. https://doi.org/10.1080/17470919.2019.1566171Google Scholar
Tang, H., Lu, X., Cui, Z., et al. (2018). Resting-state functional connectivity and deception: Exploring individualized deceptive propensity by machine learning. Neuroscience, 395, 101112. https://doi.org/10.1016/j.neuroscience.2018.10.036Google Scholar
Tavor, I., Jones, O. P., Mars, R. B., Smith, S. M., Behrens, T. E., & Jbabdi, S. (2016). Task-free MRI predicts individual differences in brain activity during task performance. Science, 352(6282), 216220. https://doi.org/10.1126/science.aad8127Google Scholar
Tobyne, S. M., Somers, D. C., Brissenden, J. A., Michalka, S. W., Noyce, A. L., & Osher, D. E. (2018). Prediction of individualized task activation in sensory modality-selective frontal cortex with “connectome fingerprinting.” NeuroImage, 183, 173185. https://doi.org/10.1016/j.neuroimage.2018.08.007Google Scholar
Tomasi, D., & Volkow, N. D. (2010). Functional connectivity density mapping. Proceedings of the National Academy of Sciences, 107(21), 98859890. https://doi.org/10.1073/pnas.1001414107Google Scholar
Tomlin, D. (2006). Agent-specific responses in the cingulate cortex during economic exchanges. Science, 312(5776), 10471050. https://doi.org/10.1126/science.1125596Google Scholar
Tzieropoulos, H. (2013). The trust game in neuroscience: A short review. Social Neuroscience, 8(5), 407416. https://doi.org/10.1080/17470919.2013.832375Google Scholar
Van den Heuvel, M. P., & Hulshoff Pol, H. E. (2010). Exploring the brain network: A review on resting-state fMRI functional connectivity. European Neuropsychopharmacology, 20(8), 519534. https://doi.org/10.1016/j.euroneuro.2010.03.008Google Scholar
Van Honk, J., Eisenegger, C., Terburg, D., Stein, D. J., & Morgan, B. (2013). Generous economic investments after basolateral amygdala damage. Proceedings of the National Academy of Sciences, 110(7), 25062510. https://doi.org/10.1073/pnas.1217316110Google Scholar
Van Overwalle, F. (2009). Social cognition and the brain: A meta-analysis. Human Brain Mapping, 30(3), 829858. https://doi.org/10.1002/hbm.20547Google Scholar
Whelan, R., & Garavan, H. (2014). When optimism hurts: Inflated predictions in psychiatric neuroimaging. Biological Psychiatry, 75(9), 746748. https://doi.org/10.1016/j.biopsych.2013.05.014Google Scholar
Wong, C. W., Olafsson, V., Tal, O., & Liu, T. T. (2012). Anti-correlated networks, global signal regression, and the effects of caffeine in resting-state functional MRI. NeuroImage, 63(1), 356364. https://doi.org/10.1016/j.neuroimage.2012.06.035Google Scholar
Worsley, K. J., & Friston, K. J. (1995). Analysis of fMRI time-series revisited – again. NeuroImage, 2(3), 173181. https://doi.org/10.1006/nimg.1995.1023Google Scholar
Yanagisawa, K., Masui, K., Furutani, K., Nomura, M., Ura, M., & Yoshida, H. (2011). Does higher general trust serve as a psychosocial buffer against social pain? An NIRS study of social exclusion. Social Neuroscience, 6(2), 190197. https://doi.org/10.1080/17470919.2010.506139Google Scholar
Yarkoni, T., & Braver, T. S. (2010). Cognitive neuroscience approaches to individual differences in working memory and executive control: Conceptual and methodological issues. In Gruszka, A., Matthews, G., & Szymura, B. (Eds.), Handbook of individual differences in cognition (pp. 87107). Springer. https://doi.org/10.1007/978-1-4419-1210-7_6Google Scholar
Yarkoni, T., & Westfall, J. (2017). Choosing prediction over explanation in psychology: Lessons from machine learning. Perspectives on Psychological Science, 12(6), 11001122. https://doi.org/10.1177/1745691617693393Google Scholar
Zuo, X.-N., Kelly, C., Adelstein, J. S., Klein, D. F., Castellanos, F. X., & Milham, M. P. (2010). Reliable intrinsic connectivity networks: Test–retest evaluation using ICA and dual regression approach. NeuroImage, 49(3), 21632177. https://doi.org/10.1016/j.neuroimage.2009.10.080Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×