Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-10T08:43:50.770Z Has data issue: false hasContentIssue false

Part IV - Neuromolecular Level of Trust

Published online by Cambridge University Press:  09 December 2021

Frank Krueger
Affiliation:
George Mason University, Virginia
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Andari, E., Duhamel, J.-R., Zalla, T., Herbrecht, E., Leboyer, M., & Sirigu, A. (2010). Promoting social behavior with oxytocin in high-functioning autism spectrum disorders. Proceedings of the National Academy of Sciences, 107(9), 43894394. https://doi.org/10.1073/pnas.0910249107CrossRefGoogle ScholarPubMed
Apicella, C. L., Cesarini, D., Johannesson, M., et al. (2010). No association between oxytocin receptor (OXTR) gene polymorphisms and experimentally elicited social preferences. PLoS ONE, 5(6), Article e11153. https://doi.org/10.1371/journal.pone.0011153Google Scholar
Bakermans-Kranenburg, M. J., & Van IJzendoorn, M. H. (2014). A sociability gene? Meta-analysis of oxytocin receptor genotype effects in humans. Psychiatric Genetics, 24(2), 4551. https://doi.org/10.1097/YPG.0b013e3283643684CrossRefGoogle ScholarPubMed
Balliet, D., Wu, J., & De Dreu, C. K. (2014). Ingroup favoritism in cooperation: A meta-analysis. Psychological Bulletin, 140(6), 15561581. https://doi.org/10.1037/a0037737CrossRefGoogle ScholarPubMed
Barraza, J. A., McCullough, M. E., Ahmadi, S., & Zak, P. J. (2011). Oxytocin infusion increases charitable donations regardless of monetary resources. Hormones and Behavior, 60(2), 148151. https://doi.org/10.1016/j.yhbeh.2011.04.008Google Scholar
Bartz, J., Simeon, D., Hamilton, H., et al. (2011). Oxytocin can hinder trust and cooperation in borderline personality disorder. Social Cognitive and Affective Neuroscience, 6(5), 556563. https://doi.org/10.1093/scan/nsq085Google Scholar
Bartz, J., Zaki, J., Bolger, N., & Ochsner, K. (2011). Social effects of oxytocin in humans: Context and person matter. Trends in Cognitive Sciences, 15(7), 301309. https://doi.org/10.1016/j.tics.2011.05.002Google Scholar
Baumgartner, T., Heinrichs, M., Vonlanthen, A., Fischbacher, U., & Fehr, E. (2008). Oxytocin shapes the neural circuitry of trust and trust adaptation in humans. Neuron, 58(4), 639650. https://doi.org/10.1016/j.neuron.2008.04.009Google Scholar
Benjamin, D. J., Cesarini, D., Van Der Loos, M. J., et al. (2012). The genetic architecture of economic and political preferences. Proceedings of the National Academy of Sciences, 109(21), 80268031. https://doi.org/10.1073/pnas.1120666109Google Scholar
Berg, J., Dickhaut, J., & McCabe, K. (1995). Trust, reciprocity, and social history. Games and Economic Behavior, 10(1), 122142. https://doi.org/10.1006/game.1995.1027CrossRefGoogle Scholar
Bohnet, I., & Zeckhauser, R. (2004). Trust, risk and betrayal. Journal of Economic Behavior & Organization, 55(4), 467484. https://doi.org/10.1016/j.jebo.2003.11.004Google Scholar
Boksem, M. A. S., Mehta, P. H., Van den Bergh, B., et al. (2013). Testosterone inhibits trust but promotes reciprocity. Psychological Science, 24(11), 23062314. https://doi.org/10.1177/0956797613495063Google Scholar
Bos, P. A., Hermans, E. J., Ramsey, N. F., & Van Honk, J. (2012). The neural mechanisms by which testosterone acts on interpersonal trust. NeuroImage, 61(3), 730737. https://doi.org/10.1016/j.neuroimage.2012.04.002Google Scholar
Bos, P. A., Terburg, D., & Van Honk, J. (2010). Testosterone decreases trust in socially naive humans. Proceedings of the National Academy of Sciences, 107(22), 99919995. https://doi.org/10.1073/pnas.0911700107Google Scholar
Buskens, V., Raub, W., Van Miltenburg, N., Montoya, E. R., & Van Honk, J. (2016). Testosterone administration moderates effect of social environment on trust in women depending on second-to-fourth digit ratio. Scientific Reports, 6(1), Article 27655. https://doi.org/10.1038/srep27655Google Scholar
Camerer, C., & Weigelt, K. (1988). Experimental tests of a sequential equilibrium reputation model. Econometrica, 56(1), 136. https://doi.org/10.2307/1911840CrossRefGoogle Scholar
Campbell, A. (2010). Oxytocin and human social behavior. Personality and Social Psychology Review: An Official Journal of the Society for Personality and Social Psychology, Inc., 14(3), 281295. https://doi.org/10.1177/1088868310363594Google Scholar
Cardoso, C., Ellenbogen, M. A., & Linnen, A.-M. (2012). Acute intranasal oxytocin improves positive self-perceptions of personality. Psychopharmacology, 220(4), 741749. https://doi.org/10.1007/s00213-011-2527-6CrossRefGoogle ScholarPubMed
Cardoso, C., Ellenbogen, M. A., Serravalle, L., & Linnen, A. M. (2013). Stress-induced negative mood moderates the relation between oxytocin administration and trust: Evidence for the tend-and-befriend response to stress? Psychoneuroendocrinology, 38(11), 28002804. https://doi.org/10.1016/j.psyneuen.2013.05.006CrossRefGoogle ScholarPubMed
Carre, J. M., Baird-Rowe, C. D., & Hariri, A. R. (2014). Testosterone responses to competition predict decreased trust ratings of emotionally neutral faces. Psychoneuroendocrinology, 49, 7983. https://doi.org/10.1016/j.psyneuen.2014.06.011CrossRefGoogle ScholarPubMed
Christensen, J. C., Shiyanov, P. A., Estepp, J. R., & Schlager, J. J. (2014). Lack of association between human plasma oxytocin and interpersonal trust in a prisoner’s dilemma paradigm. PLoS ONE, 9(12), Article e116172. https://doi.org/10.1371/journal.pone.0119691CrossRefGoogle Scholar
Dale, H. H. (1906). On some physiological actions of ergot. The Journal of Physiology, 34(3), 163206. https://doi.org/10.1113/jphysiol.1906.sp001148Google Scholar
De Dreu, C. K., Greer, L. L., Handgraaf, M. J., et al. (2010). The neuropeptide oxytocin regulates parochial altruism in intergroup conflict among humans. Science, 328(5984), 14081411. https://doi.org/10.1126/science.1189047Google Scholar
de Visser, E. J., Monfort, S. S., Goodyear, K., et al. (2017). A little anthropomorphism goes a long way: Effects of oxytocin on trust, compliance, and team performance with automated agents. Human Factors, 59(1), 116133. https://doi.org/10.1177/0018720816687205Google Scholar
Declerck, C. H., Boone, C., & Kiyonari, T. (2010). Oxytocin and cooperation under conditions of uncertainty: The modulating role of incentives and social information. Hormones and Behavior, 57(3), 368374. https://doi.org/10.1016/j.yhbeh.2010.01.006Google Scholar
Declerck, C. H., Boone, C., Pauwels, L., Vogt, B., & Fehr, E. (2020). A registered replication study on oxytocin and trust. Nature Human Behaviour, 4, 646655. https://doi.org/10.1038/s41562-020-0878-xGoogle Scholar
DeVries, A. C., Young, W. S. III, & Nelson, R. J. (1997). Reduced aggressive behaviour in mice with targeted disruption of the oxytocin gene. Journal of Neuroendocrinology, 9(5), 363368. https://doi.org/10.1046/j.1365-2826.1997.t01-1-00589.xGoogle Scholar
Donaldson, Z. R., & Young, L. J. (2008). Oxytocin, vasopressin, and the neurogenetics of sociality. Science, 322(5903), 900904. https://doi.org/10.1126/science.1158668Google Scholar
Ebert, A., Kolb, M., Heller, J., Edel, M.-A., Roser, P., & Brüne, M. (2013). Modulation of interpersonal trust in borderline personality disorder by intranasal oxytocin and childhood trauma. Social Neuroscience, 8(4), 305313. https://doi.org/10.1080/17470919.2013.807301Google Scholar
Fang, Y., Li, Z., Wu, S., Wang, C., Dong, Y., & He, S. (2020). Oxytocin receptor gene polymorphisms moderate the relationship between job stress and general trust in Chinese Han university teachers. Journal of Affective Disorders, 260, 1823. https://doi.org/10.1016/j.jad.2019.08.080Google Scholar
Feifel, D., Shilling, P. D., & MacDonald, K. (2016). A review of oxytocin’s effects on the positive, negative, and cognitive domains of schizophrenia. Biological Psychiatry, 79(3), 222233. https://doi.org/10.1016/j.biopsych.2015.07.025Google Scholar
Gimpl, G., & Fahrenholz, F. (2001). The oxytocin receptor system: Structure, function, and regulation. Physiological Reviews, 81(2), 629683. https://doi.org/10.1152/physrev.2001.81.2.629Google Scholar
Grainger, S. A., Henry, J. D., Steinvik, H. R., & Vanman, E. J. (2019). Intranasal oxytocin does not alter initial perceptions of facial trustworthiness in younger or older adults. Journal of Psychopharmacology, 33(2), 250254. https://doi.org/10.1177/0269881118806303Google Scholar
Green, L., Fein, D., Modahl, C., et al. (2001). Oxytocin and autistic disorder: Alterations in peptide forms. Biological Psychiatry, 50(8), 609613. https://doi.org/10.1016/s0006-3223(01)01139-8CrossRefGoogle ScholarPubMed
Grinevich, V., Knobloch-Bollmann, H. S., Eliava, M., Busnelli, M., & Chini, B. (2016). Assembling the puzzle: Pathways of oxytocin signaling in the brain. Biological Psychiatry, 79(3), 155164. https://doi.org/10.1016/j.biopsych.2015.04.013Google Scholar
Ide, J. S., Nedic, S., Wong, K. F., et al. (2018). Oxytocin attenuates trust as a subset of more general reinforcement learning, with altered reward circuit functional connectivity in males. NeuroImage, 174, 3543. https://doi.org/10.1016/j.neuroimage.2018.02.035Google Scholar
Kendrick, K. M., Guastella, A. J., & Becker, B. (2017). Overview of human oxytocin research. In Hurlemann, R. & Grinevich, V. (Eds.), Behavioral pharmacology of neuropeptides: Oxytocin (pp. 321348). Springer. https://doi.org/10.1007/7854_2017_19Google Scholar
Keverne, E. B., & Kendrick, K. M. (1992). Oxytocin facilitation of maternal behavior in sheep. Annals of the New York Academy of Sciences, 652(1), 83101. https://doi.org/10.1111/j.1749-6632.1992.tb34348.xGoogle Scholar
Kirsch, P., Esslinger, C., Chen, Q., et al. (2005). Oxytocin modulates neural circuitry for social cognition and fear in humans. Journal of Neuroscience, 25(49), 1148911493. https://doi.org/10.1523/JNEUROSCI.3984-05.2005Google Scholar
Klackl, J., Pfundmair, M., Agroskin, D., & Jonas, E. (2013). Who is to blame? Oxytocin promotes nonpersonalistic attributions in response to a trust betrayal. Biological Psychology, 92(2), 387394. https://doi.org/10.1016/j.biopsycho.2012.11.010Google Scholar
Knobloch, H. S., Charlet, A., Hoffmann, L. C., et al. (2012). Evoked axonal oxytocin release in the central amygdala attenuates fear response. Neuron, 73(3), 553566. https://doi.org/10.1016/j.neuron.2011.11.030Google Scholar
Kosfeld, M., Heinrichs, M., Zak, P. J., Fischbacher, U., & Fehr, E. (2005). Oxytocin increases trust in humans. Nature, 435(7042), 673676. https://doi.org/10.1038/nature03701Google Scholar
Kovács, G. L. (1986). Oxytocin and behavior. In Ganten, D. & Pfaff, D. (Eds.), Neurobiology of oxytocin (pp. 91128). Springer. https://doi.org/10.1007/978-3-642-70414-7_4CrossRefGoogle Scholar
Kret, M. E., & De Dreu, C. K. (2017). Pupil-mimicry conditions trust in partners: Moderation by oxytocin and group membership. Proceedings of the Royal Society B: Biological Sciences, 284(1850), Article 20162554. https://doi.org/10.1098/rspb.2016.2554Google Scholar
Krueger, F., & Meyer-Lindenberg, A. (2019). Toward a model of interpersonal trust drawn from neuroscience, psychology, and economics. Trends in Neurosciences, 42(2), 92101. https://doi.org/10.1016/j.tins.2018.10.004CrossRefGoogle Scholar
Krueger, F., Parasuraman, R., Iyengar, V., et al. (2012). Oxytocin receptor genetic variation promotes human trust behavior. Frontiers in Human Neuroscience, 6, Article 4. https://doi.org/10.3389/fnhum.2012.00004Google Scholar
Kumsta, R., & Heinrichs, M. (2013). Oxytocin, stress and social behavior: Neurogenetics of the human oxytocin system. Current Opinion in Neurobiology, 23(1), 1116. https://doi.org/10.1016/j.conb.2012.09.004Google Scholar
Lambert, B., Declerck, C. H., & Boone, C. (2014). Oxytocin does not make a face appear more trustworthy but improves the accuracy of trustworthiness judgments. Psychoneuroendocrinology, 40, 6068. https://doi.org/10.1016/j.psyneuen.2013.10.015Google Scholar
Lane, A., Mikolajczak, M., Treinen, E., et al. (2015). Failed replication of oxytocin effects on trust: The envelope task case. PLoS ONE, 10(9), Article e0137000. https://doi.org/10.1371/journal.pone.0137000Google Scholar
Lazarus, S. A., Cheavens, J. S., Festa, F., & Rosenthal, M. Z. (2014). Interpersonal functioning in borderline personality disorder: A systematic review of behavioral and laboratory-based assessments. Clinical Psychology Review, 34(3), 193205. https://doi.org/10.1016/j.cpr.2014.01.007Google Scholar
Lee, M. R., Scheidweiler, K. B., Diao, X. X., et al. (2018). Oxytocin by intranasal and intravenous routes reaches the cerebrospinal fluid in rhesus macaques: Determination using a novel oxytocin assay. Molecular Psychiatry, 23(1), 115122. https://doi.org/10.1038/mp.2017.27Google Scholar
Lee, M. R., Shnitko, T. A., Blue, S. W., et al. (2020). Labeled oxytocin administered via the intranasal route reaches the brain in rhesus macaques. Nature Communications, 11(1), Article 2783. https://doi.org/10.1038/s41467-020-15942-1Google Scholar
Lee, M. R., Wehring, H. J., McMahon, R. P., et al. (2019). The effect of intranasal oxytocin on measures of social cognition in schizophrenia: A negative report. Journal of Psychiatry and Brain Science, 4(1), Article e190001. https://doi.org/10.20900/jpbs.20190001Google Scholar
Long, P. A., & Freeman, H. (2019). Patients in pain: The effects of oxytocin on trust and decision making. Proceedings of the International Symposium on Human Factors and Ergonomics in Health Care, 8(1), 164166. https://doi.org/10.1177/2327857919081040Google Scholar
LoParo, D., & Waldman, I. (2015). The oxytocin receptor gene (OXTR) is associated with autism spectrum disorder: A meta-analysis. Molecular Psychiatry, 20(5), 640646. https://doi.org/10.1038/mp.2014.77Google Scholar
Lord, C., Cook, E. H., Leventhal, B. L., & Amaral, D. G. (2000). Autism spectrum disorders. Neuron, 28(2), 355363. https://doi.org/10.1016/s0896-6273(00)00115-xGoogle Scholar
Luo, R., Xu, L., Zhao, W., et al. (2017). Oxytocin facilitation of acceptance of social advice is dependent upon the perceived trustworthiness of individual advisors. Psychoneuroendocrinology, 83, 18. https://doi.org/10.1016/j.psyneuen.2017.05.020Google Scholar
MacDonald, E., Dadds, M. R., Brennan, J. L., Williams, K., Levy, F., & Cauchi, A. J. (2011). A review of safety, side-effects and subjective reactions to intranasal oxytocin in human research. Psychoneuroendocrinology, 36(8), 11141126. https://doi.org/10.1016/j.psyneuen.2011.02.015Google Scholar
Manuck, S. B., & McCaffery, J. M. (2014). Gene-environment interaction. Annual Review of Psychology, 65, 4170. https://doi.org/10.3389/fpsyg.2018.02036Google Scholar
McClelland, D. C. (1987). Human motivation. Cambridge University Press. https://doi.org/10.1017/CBO9781139878289Google Scholar
McCullough, M. E., Churchland, P. S., & Mendez, A. J. (2013). Problems with measuring peripheral oxytocin: Can the data on oxytocin and human behavior be trusted? Neuroscience & Biobehavioral Reviews, 37(8), 14851492. https://doi.org/10.1016/j.neubiorev.2013.04.018Google Scholar
Merolla, J. L., Burnett, G., Pyle, K. V., Ahmadi, S., & Zak, P. J. (2013). Oxytocin and the biological basis for interpersonal and political trust. Political Behavior, 35(4), 753776. https://doi.org/10.1007/s11109-012-9219-8Google Scholar
Meyer-Lindenberg, A., Domes, G., Kirsch, P., & Heinrichs, M. (2011). Oxytocin and vasopressin in the human brain: Social neuropeptides for translational medicine. Nature Reviews Neuroscience, 12(9), 524538. https://doi.org/10.1038/nrn3044Google Scholar
Mikolajczak, M., Gross, J. J., Lane, A., Corneille, O., de Timary, P., & Luminet, O. (2010). Oxytocin makes people trusting, not gullible. Psychological Science, 21(8), 10721074. https://doi.org/10.1177/0956797610377343Google Scholar
Mikolajczak, M., Pinon, N., Lane, A., de Timary, P., & Luminet, O. (2010). Oxytocin not only increases trust when money is at stake, but also when confidential information is in the balance. Biological Psychology, 85(1), 182184. https://doi.org/10.1016/j.biopsycho.2010.05.010Google Scholar
Modahl, C., Green, L. A., Fein, D., et al. (1998). Plasma oxytocin levels in autistic children. Biological Psychiatry, 43(4), 270277. https://doi.org/10.1016/s0006-3223(97)00439-3Google Scholar
Nave, G., Camerer, C., & McCullough, M. (2015). Does oxytocin increase trust in humans? A critical review of research. Perspectives on Psychological Science: A Journal of The Association for Psychological Science, 10(6), 772789. https://doi.org/10.1177/1745691615600138CrossRefGoogle ScholarPubMed
Nishina, K., Takagishi, H., Fermin, A., et al. (2018). Association of the oxytocin receptor gene with attitudinal trust: Role of amygdala volume. Social Cognitive and Affective Neuroscience, 13(10), 10911097. https://doi.org/10.1093/scan/nsy075Google Scholar
Nishina, K., Takagishi, H., Inoue-Murayama, M., Takahashi, H., & Yamagishi, T. (2015). Polymorphism of the oxytocin receptor gene modulates behavioral and attitudinal trust among men but not women. PLoS ONE, 10(10), Article e0137089. https://doi.org/10.1371/journal.pone.0137089Google Scholar
O’Doherty, J., Dayan, P., Schultz, J., Deichmann, R., Friston, K., & Dolan, R. J. (2004). Dissociable roles of ventral and dorsal striatum in instrumental conditioning. Science, 304(5669), 452454. https://doi.org/10.1126/science.1094285Google Scholar
Ooi, Y. P., Weng, S.-J., Kossowsky, J., Gerger, H., & Sung, M. (2017). Oxytocin and autism spectrum disorders: A systematic review and meta-analysis of randomized controlled trials. Pharmacopsychiatry, 50(1), 513. https://doi.org/10.1055/s-0042-109400Google Scholar
Ott, I., & Scott, J. C. (1910). The action of infundibulin upon the mammary secretion. Proceedings of the Society for Experimental Biology and Medicine, 8(2), 4849. https://doi.org/10.3181/00379727-8-27Google Scholar
Pedersen, C. A., Gibson, C. M., Rau, S. W., et al. (2011). Intranasal oxytocin reduces psychotic symptoms and improves theory of mind and social perception in schizophrenia. Schizophrenia Research, 132(1), 5053. https://doi.org/10.1016/j.schres.2011.07.027CrossRefGoogle ScholarPubMed
Pedersen, C. A., & Prange, A. J. (1979). Induction of maternal behavior in virgin rats after intracerebroventricular administration of oxytocin. Proceedings of the National Academy of Sciences, 76(12), 66616665. https://doi.org/10.1073/pnas.76.12.6661Google Scholar
Quintana, D. S., Rokicki, J., Van der Meer, D., et al. (2019). Oxytocin pathway gene networks in the human brain. Nature Communications, 10(1), 112. https://doi.org/10.1038/s41467-019-08503-8Google Scholar
Quintana, D. S., Westlye, L. T., Rustan, Ø. G., et al. (2015). Low-dose oxytocin delivered intranasally with Breath Powered device affects social-cognitive behavior: A randomized four-way crossover trial with nasal cavity dimension assessment. Translational Psychiatry, 5(7), Article e602. https://doi.org/10.1038/tp.2015.93Google Scholar
Rimmele, U., Hediger, K., Heinrichs, M., & Klaver, P. (2009). Oxytocin makes a face in memory familiar. Journal of Neuroscience, 29(1), 3842. https://doi.org/10.1523/JNEUROSCI.4260-08.2009Google Scholar
Salonia, A., Nappi, R. E., Pontillo, M., et al. (2005). Menstrual cycle-related changes in plasma oxytocin are relevant to normal sexual function in healthy women. Hormones and Behavior, 47(2), 164169. https://doi.org/10.1016/j.yhbeh.2004.10.002Google Scholar
Sauer, C., Montag, C., Reuter, M., & Kirsch, P. (2019). Oxytocinergic modulation of brain activation to cues related to reproduction and attachment: Differences and commonalities during the perception of erotic and fearful social scenes. International Journal of Psychophysiology: Official Journal of the International Organization of Psychophysiology, 136, 8796. https://doi.org/10.1016/j.ijpsycho.2018.06.005Google Scholar
Spengler, F. B., Schultz, J., Scheele, D., et al. (2017). Kinetics and dose dependency of intranasal oxytocin effects on amygdala reactivity. Biological Psychiatry, 82(12), 885894. https://doi.org/10.1016/j.biopsych.2017.04.015Google Scholar
Tabak, B. A., McCullough, M. E., Carver, C. S., Pedersen, E. J., & Cuccaro, M. L. (2014). Variation in oxytocin receptor gene (OXTR) polymorphisms is associated with emotional and behavioral reactions to betrayal. Social Cognitive and Affective Neuroscience, 9(6), 810816. https://doi.org/10.1093/scan/nst042Google Scholar
Tauber, M., Mantoulan, C., Copet, P., et al. (2011). Oxytocin may be useful to increase trust in others and decrease disruptive behaviours in patients with Prader-Willi syndrome: A randomised placebo-controlled trial in 24 patients. Orphanet Journal of Rare Diseases, 6(1), Article 47. https://doi.org/10.1186/1750-1172-6-47CrossRefGoogle ScholarPubMed
Teed, A. R., Han, K., Rakic, J., Mark, D. B., & Krawczyk, D. C. (2019). The influence of oxytocin and vasopressin on men’s judgments of social dominance and trustworthiness: An fMRI study of neutral faces. Psychoneuroendocrinology, 106, 252258. https://doi.org/10.1016/j.psyneuen.2019.04.014Google Scholar
Ten Velden, F. S., Daughters, K., & De Dreu, C. K. (2017). Oxytocin promotes intuitive rather than deliberated cooperation with the in-group. Hormones and Behavior, 92, 164171. https://doi.org/10.1016/j.yhbeh.2016.06.005Google Scholar
Theodoridou, A., Rowe, A. C., Penton-Voak, I. S., & Rogers, P. J. (2009). Oxytocin and social perception: Oxytocin increases perceived facial trustworthiness and attractiveness. Hormones and Behavior, 56(1), 128132. https://doi.org/10.1016/j.yhbeh.2009.03.019Google Scholar
Valstad, M., Alvares, G. A., Egknud, M., et al. (2017). The correlation between central and peripheral oxytocin concentrations: A systematic review and meta-analysis. Neuroscience & Biobehavioral Reviews, 78, 117124. https://doi.org/10.1016/j.neubiorev.2017.04.017Google Scholar
Van IJzendoorn, M. H., & Bakermans-Kranenburg, M. J. (2012). A sniff of trust: Meta-analysis of the effects of intranasal oxytocin administration on face recognition, trust to in-group, and trust to out-group. Psychoneuroendocrinology, 37(3), 438443. https://doi.org/10.1016/j.psyneuen.2011.07.008Google Scholar
Watson, M. L. (2005). Can there be just one trust? A cross-disciplinary identification of trust definitions and measurement. The Institute for Public Relations, 125.Google Scholar
Woolley, J., Chuang, B., Fussell, C., et al. (2017). Intranasal oxytocin increases facial expressivity, but not ratings of trustworthiness, in patients with schizophrenia and healthy controls. Psychological Medicine, 47(7), 13111322. https://doi.org/10.1017/S0033291716003433Google Scholar
Yao, S., Zhao, W., Cheng, R., Geng, Y., Luo, L., & Kendrick, K. M. (2014). Oxytocin makes females, but not males, less forgiving following betrayal of trust. The International Journal of Neuropsychopharmacology, 17(11), 17851792. https://doi.org/10.1017/s146114571400090xGoogle Scholar
Zak, P. J., Kurzban, R., & Matzner, W. T. (2005). Oxytocin is associated with human trustworthiness. Hormones and Behavior, 48(5), 522527. https://doi.org/10.1016/j.yhbeh.2005.07.009Google Scholar
Zhang, H., Gross, J., De Dreu, C., & Ma, Y. (2019). Oxytocin promotes coordinated out-group attack during intergroup conflict in humans. eLife, 8, Article e40698. https://doi.org/10.7554/eLife.40698.001Google Scholar
Zhong, S., Monakhov, M., Mok, H. P., et al. (2012). U-shaped relation between plasma oxytocin levels and behavior in the trust game. PLoS ONE, 7(12), Article e51095. https://doi.org/10.1371/journal.pone.0051095Google Scholar

References

Aimone, J. A., Houser, D., & Weber, B. (2014). Neural signatures of betrayal aversion: An fMRI study of trust. Proceedings: Biological Sciences, 281(1782), Article 20132127. https://doi.org/10.1098/rspb.2013.2127Google Scholar
Alarcon, G. M., Lyons, J. B., Christensen, J. C., et al. (2018). The effect of propensity to trust and perceptions of trustworthiness on trust behaviors in dyads. Behavioral Research Methods, 50(5), 19061920. https://doi.org/10.3758/s13428–017-0959-6Google Scholar
Allott, K., & Redman, J. (2007). Are there sex differences associated with the effects of ecstasy/3,4-methylenedioxymethamphetamine (MDMA)? Neuroscience & Biobehavioral Reviews, 31(3), 327347. https://doi.org/10.1016/j.neubiorev.2006.09.009Google Scholar
Baumeister, R. F., & Leary, M. R. (1995). The need to belong: Desire for interpersonal attachments as a fundamental human motivation. Psychological Bulletin, 117(3), 497529. https://doi.org/10.1037/0033-2909.117.3.497CrossRefGoogle ScholarPubMed
Baumgartner, T., Heinrichs, M., Vonlanthen, A., Fischbacher, U., & Fehr, E. (2008). Oxytocin shapes the neural circuitry of trust and trust adaptation in humans. Neuron, 58(4), 639650. https://doi.org/10.1016/j.neuron.2008.04.009Google Scholar
Bedi, G., Hyman, D., & de Wit, H. (2010). Is ecstasy an “empathogen”? Effects of +/-3,4-methylenedioxymethamphetamine on prosocial feelings and identification of emotional states in others. Biological Psychiatry, 68(12), 11341140. https://doi.org/10.1016/j.biopsych.2010.08.003Google Scholar
Belfi, A. M., Koscik, T. R., & Tranel, D. (2015). Damage to the insula is associated with abnormal interpersonal trust. Neuropsychologia, 71, 165172. https://doi.org/10.1016/j.neuropsychologia.2015.04.003CrossRefGoogle Scholar
Bellucci, G., Chernyak, S. V., Goodyear, K., Eickhoff, S. B., & Krueger, F. (2017). Neural signatures of trust in reciprocity: A coordinate-based meta-analysis. Human Brain Mapping, 38(3), 12331248. https://doi.org/10.1002/hbm.23451CrossRefGoogle ScholarPubMed
Bellucci, G., Feng, C., Camilleri, J., Eickhoff, S. B., & Krueger, F. (2018). The role of the anterior insula in social norm compliance and enforcement: Evidence from coordinate-based and functional connectivity meta-analyses. Neuroscience & Biobehavoral Reviews, 92, 378389. https://doi.org/10.1016/j.neubiorev.2018.06.024Google Scholar
Bellucci, G., Munte, T. F., & Park, S. Q. (2020). Effects of a dopamine against on trusting behaviors in females. Psychopharmacology (Berl), 237(6), 16711680. https://doi.org/10.1007/s00213–020-05488-xGoogle Scholar
Berg, J., Dickhaut, J., & McCabe, K. (1995). Trust, reciprocity, and social history. Games and Economic Behavior, 10(1), 122142. https://doi.org/10.1006/game.1995.1027Google Scholar
Berridge, K. C., & Robinson, T. E. (2003). Parsing reward. Trends in Neuroscience, 26(9), 507513. https://doi.org/10.1016/s0166–2236(03)00233-9Google Scholar
Block, M. L., Zecca, L., & Hong, J. S. (2007). Microglia-mediated neurotoxicity: Uncovering the molecular mechanisms. Nature Reviews Neuroscience, 8(1), 5769. https://doi.org/10.1038/nrn2038Google Scholar
Bodi, N., Keri, S., Nagy, H., et al. (2009). Reward-learning and the novelty-seeking personality: A between- and within-subjects study of the effects of dopamine agonists on young Parkinson’s patients. Brain, 132(Pt 9), 23852395. https://doi.org/10.1093/brain/awp094Google Scholar
Bohnet, I., Greig, F., Herrmann, B., & Zeckhauser, R. (2008). Betrayal aversion: Evidence from Brazil, China, Oman, Switzerland, Turkey, and the United States. American Economic Review, 98(1), 294310. https://doi.org/10.1257/aer.98.1.294Google Scholar
Bohnet, I., & Zeckhauser, R. (2004). Trust, risk and betrayal. Journal of Economic Behavior & Organization, 55(4), 467484. https://doi.org/10.1016/j.jebo.2003.11.004Google Scholar
Bond, A., & Lader, M. (1974). The use of analogue scales in rating subjective feelings. British Journal of Medical Psychology, 47, 211218. https://doi.org/10.1111/j.2044-8341.1974.tb02285.xGoogle Scholar
Bonnefon, J. F., Hopfensitz, A., & De Neys, W. (2013). The modular nature of trustworthiness detection. Journal of Experimental Psychology: General, 142(1), 143150. https://doi.org/10.1037/a0028930Google Scholar
Burnham, T., McCabe, K., & Smith, V. L. (2000). Friend-or-foe intentionality priming in an extensive form trust game. Journal of Economic Behavior & Organization, 43(1), 5773. https://doi.org/10.1016/s0167–2681(00)00108-6Google Scholar
Caceda, R., Moskovciak, T., Prendes-Alvarez, S., et al. (2014). Gender-specific effects of depression and suicidal ideation in prosocial behaviors. PLoS ONE, 9(9), Article e108733. https://doi.org/10.1371/journal.pone.0108733Google Scholar
Cacioppo, J. T., Norris, C. J., Decety, J., Monteleone, G., & Nusbaum, H. (2009). In the eye of the beholder: Individual differences in perceived social isolation predict regional brain activation to social stimuli. Journal of Cognitive Neuroscience, 21(1), 8392. https://doi.org/10.1162/jocn.2009.21007Google Scholar
Camerer, C. F. (2003). Behavioural studies of strategic thinking in games. Trends in Cognitive Sciences, 7(5), 225231. https://doi.org/10.1016/S1364–6613(03)00094-9Google Scholar
Cami, J., Farre, M., Mas, M., et al. (2000). Human pharmacology of 3,4-methylenedioxymethamphetamine (“ecstasy”): Psychomotor performance and subjective effects. Journal of Clinical Psychopharmacology, 20(4), 455466. https://doi.org/10.1097/00004714-200008000-00010Google Scholar
Campbell-Meiklejohn, D. K., Simonsen, A., Jensen, M., et al. (2012). Modulation of social influence by methylphenidate. Neuropsychopharmacology, 37(6), 15171525. https://doi.org/10.1038/npp.2011.337Google Scholar
Campbell-Meiklejohn, D., Simonsen, A., Scheel-Kruger, J., et al. (2012). In for a penny, in for a pound: Methylphenidate reduces the inhibitory effect of high stakes on persistent risky choice. Journal of Neuroscience, 32(38), 1303213038. https://doi.org/10.1523/jneurosci.0151-12.2012Google Scholar
Carhart-Harris, R. L., & Nutt, D. J. (2017). Serotonin and brain function: A tale of two receptors. Journal of Psychopharmacology, 31(9), 10911120. https://doi.org/10.1177/0269881117725915Google Scholar
Chang, L. J., Doll, B. B., Van ’t Wout, M., Frank, M. J., & Sanfey, A. G. (2010). Seeing is believing: Trustworthiness as a dynamic belief. Cognitive Psychology, 61(2), 87105. https://doi.org/10.1016/j.cogpsych.2010.03.001Google Scholar
Collins, A. G., & Frank, M. J. (2013). Cognitive control over learning: Creating, clustering, and generalizing task-set structure. Psychological Review, 120(1), 190229. https://doi.org/10.1037/a0030852Google Scholar
Cox, J. C. (2004). How to identify trust and reciprocity. Games and Economic Behavior, 46(2), 260281. https://doi.org/10.1016/s0899–8256(03)00119-2Google Scholar
Coyne, J. (1976). Depression and the response of others. Journal of Abnormal Psychology, 85, 186193. https://doi.org/10.1037/0021-843x.85.2.186Google Scholar
Crockett, M. J., & Fehr, E. (2014). Pharmacology of economic and social decision making. In Glimcher, P. W. & Fehr, E. (Eds.), Neuroeconomics (2nd ed., pp. 259279). Academic Press.Google Scholar
de la Torre, R., Farre, M., Roset, P. N., et al. (2004). Human pharmacology of MDMA: Pharmacokinetics, metabolism, and disposition. Therapeutic Drug Monitoring, 26(2), 137144. https://doi.org/10.1097/00007691-200404000-00009Google Scholar
Delgado, M. R., Frank, R. H., & Phelps, E. A. (2005). Perceptions of moral character modulate the neural systems of reward during the trust game. Nature Neuroscience, 8(11), 16111618. https://doi.org/10.1038/nn1575Google Scholar
Depue, R. A., & Morrone-Strupinsky, J. V. (2005). A neurobehavioral model of affiliative bonding: Implications for conceptualizing a human trait of affiliation. Behavioral and Brain Sciences, 28(3), 313350; discussion 350–395. https://doi.org/10.1017/s0140525x05000063Google Scholar
DeVito, E. E., Blackwell, A. D., Kent, L., et al. (2008). The effects of methylphenidate on decision making in attention-deficit/hyperactivity disorder. Biological Psychiatry, 64(7), 636639. https://doi.org/10.1016/j.biopsych.2008.04.017Google Scholar
Dewall, C. N., Macdonald, G., Webster, G. D., et al. (2010). Acetaminophen reduces social pain: Behavioral and neural evidence. Psychological Science, 21(7), 931937. https://doi.org/10.1177/0956797610374741Google Scholar
Doorduin, J., de Vries, E. F., Willemsen, A. T., de Groot, J. C., Dierckx, R. A., & Klein, H. C. (2009). Neuroinflammation in schizophrenia-related psychosis: A PET study. Journal of Nuclear Medicine, 50(11), 18011807. https://doi.org/10.2967/jnumed.109.066647Google Scholar
Dumont, G. J., Sweep, F. C., Van der Steen, R., et al. (2009). Increased oxytocin concentrations and prosocial feelings in humans after ecstasy (3,4-methylenedioxymethamphetamine) administration. Social Neuroscience, 4(4), 359366. https://doi.org/10.1080/17470910802649470Google Scholar
Durso, G. R., Luttrell, A., & Way, B. M. (2015). Over-the-counter relief from pains and pleasures alike: Acetaminophen blunts evaluation sensitivity to both negative and positive stimuli. Psychological Science, 26(6), 750758. https://doi.org/10.1177/0956797615570366Google Scholar
Fairley, K., Vyrastekova, J., Weitzel, U., & Sanfey, A. G. (2019). Subjective beliefs about trust and reciprocity activate an expected reward signal in the ventral striatum. Frontiers in Neuroscience, 13, Article 660. https://doi.org/10.3389/fnins.2019.00660Google Scholar
Fareri, D. S., Chang, L. J., & Delgado, M. R. (2012). Effects of direct social experience on trust decisions and neural reward circuitry. Frontiers in Neuroscience, 6, Article 148. https://doi.org/10.3389/fnins.2012.00148Google Scholar
Fehr, E. (2009). On the economics and biology of trust. Journal of the European Economic Association, 7(2–3), 235266. https://doi.org/10.1162/jeea.2009.7.2-3.235Google Scholar
Fernandez-Theoduloz, G., Paz, V., Nicolaisen-Sobesky, E., et al. (2019). Social avoidance in depression: A study using a social decision making task. Journal of Abnormal Psychology, 128(3), 234244. https://doi.org/10.1037/abn0000415Google Scholar
Fett, A. K., Shergill, S. S., Joyce, D. W., et al. (2012). To trust or not to trust: The dynamics of social interaction in psychosis. Brain, 135(Pt 3), 976984. https://doi.org/10.1093/brain/awr359Google Scholar
Flood, M. M. (1952). Some experimental games: Research memorandum RM-789. RAND Corporation.Google Scholar
Fouragnan, E., Chierchia, G., Greiner, S., Neveu, R., Avesani, P., & Coricelli, G. (2013). Reputational priors magnify striatal responses to violations of trust. Journal of Neuroscience, 33(8), 36023611. https://doi.org/10.1523/jneurosci.3086-12.2013Google Scholar
Frank, M. G., Baratta, M. V., Sprunger, D. B., Watkins, L. R., & Maier, S. F. (2007). Microglia serve as a neuroimmune substrate for stress-induced potentiation of CNS pro-inflammatory cytokine responses. Brain, Behavior, and Immunity, 21(1), 4759. https://doi.org/10.1016/j.bbi.2006.03.005Google Scholar
Frank, M. J., Seeberger, L. C., & O’Reilly, R. C. (2004). By carrot or by stick: Cognitive reinforcement learning in parkinsonism. Science, 306(5703), 19401943. https://doi.org/10.1126/science.1102941Google Scholar
Fu, C., Yao, X., Yang, X., Zheng, L., Li, J., & Wang, Y. (2019). Trust game database: Behavioral and EEG data from two trust games. Frontiers in Psychology, 10, Article 2656. https://doi.org/10.3389/fpsyg.2019.02656Google Scholar
Fung, K., & Alden, L. E. (2017). Once hurt, twice shy: Social pain contributes to social anxiety. Emotion, 17(2), 231239. https://doi.org/10.1037/emo0000223Google Scholar
Gabay, A. S., Kempton, M. J., Gilleen, J., & Mehta, M. A. (2019). MDMA increases cooperation and recruitment of social brain areas when playing trustworthy players in an iterated prisoner’s dilemma. Journal of Neuroscience, 39(2), 307320. https://doi.org/10.1523/jneurosci.1276-18.2018Google Scholar
Gerretsen, P., Graff-Guerrero, A., Menon, M., et al. (2010). Is desire for social relationships mediated by the serotonergic system in the prefrontal cortex? An [(18)F]setoperone PET study. Social Neuroscience, 5(4), 375383. https://doi.org/10.1080/17470911003589309Google Scholar
Gurevich, E. V., & Joyce, J. N. (1999). Distribution of dopamine D3 receptor expressing neurons in the human forebrain: Comparison with D2 receptor expressing neurons. Neuropsychopharmacology, 20(1), 6080. https://doi.org/10.1016/s0893–133x(98)00066-9Google Scholar
Hahn, T., Notebaert, K., Anderl, C., Teckentrup, V., Kassecker, A., & Windmann, S. (2015). How to trust a perfect stranger: Predicting initial trust behavior from resting-state brain-electrical connectivity. Social Cognitive and Affective Neuroscience, 10(6), 809813. https://doi.org/10.1093/scan/nsu122Google Scholar
Hall, H., Halldin, C., Dijkkstra, D., et al. (1996). Autoradiographic localisation of D 3 - dopamine receptors in the human brain using the selective D 3 -dopamine receptor agonist (+)-[3] PD 128907. Psychopharmacology, 128, 240247. https://doi.org/10.1007/s002130050131Google Scholar
Hanisch, U. K., & Kettenmann, H. (2007). Microglia: Active sensor and versatile effector cells in the normal and pathologic brain. Nature Neuroscience, 10(11), 13871394. https://doi.org/10.1038/nn1997Google Scholar
Harvey, P. D., Patterson, T. L., Potter, L. S., Zhong, K., & Brecher, M. (2006). Improvement in social competence with short-term atypical antipsychotic treatment: A randomized, double-blind comparison of quetiapine versus risperidone for social competence, social cognition, and neuropsychological functioning. American Journal of Psychiatry, 163(11), 19181925. https://doi.org/10.1176/ajp.2006.163.11.1918Google Scholar
Hashimoto, K., & Ishima, T. (2010). A novel target of action of minocycline in NGF-induced neurite outgrowth in PC12 cells: Translation initiation [corrected] factor eIF4AI. PLoS ONE, 5(11), Article e15430. https://doi.org/10.1371/journal.pone.0015430Google Scholar
He, J., & Crews, F. T. (2008). Increased MCP-1 and microglia in various regions of the human alcoholic brain. Experimental Neurology, 210(2), 349358. https://doi.org/10.1016/j.expneurol.2007.11.017Google Scholar
Heinrichs, M., Baumgartner, T., Kirschbaum, C., & Ehlert, U. (2003). Social support and oxytocin interact to suppress cortisol and subjective responses to psychosocial stress. Biological Psychiatry, 54(12), 13891398. https://doi.org/10.1016/s0006–3223(03)00465-7Google Scholar
Hysek, C. M., Simmler, L. D., Schillinger, N., et al. (2014). Pharmacokinetic and pharmacodynamic effects of methylphenidate and MDMA administered alone or in combination. International Journal of Neuropsychopharmacology, 17(3), 371381. https://doi.org/10.1017/S1461145713001132Google Scholar
Ishibashi, K., Ishii, K., Oda, K., Mizusawa, H., & Ishiwata, K. (2011). Binding of pramipexole to extrastriatal dopamine D2/D3 receptors in the human brain: A positron emission tomography study using 11C-FLB 457. PLoS ONE, 6(3), Article e17723. https://doi.org/10.1371/journal.pone.0017723Google Scholar
Jocham, G., Klein, T. A., & Ullsperger, M. (2011). Dopamine-mediated reinforcement learning signals in the striatum and ventromedial prefrontal cortex underlie value-based choices. Journal of Neuroscience, 31(5), 16061613. https://doi.org/10.1523/jneurosci.3904-10.2011Google Scholar
Johnson, N. D., & Mislin, A. A. (2011). Trust games: A meta-analysis. Journal of Economic Psychology, 32(5), 865889. https://doi.org/10.1016/j.joep.2011.05.007Google Scholar
Johnson-George, C., & Swap, W. C. (1982). Measurement of specific interpersonal trust: Construction and validation of a scale to assess trust in a specific other. Journal of Personality and Social Psychology, 43(6), 13061317. https://doi.org/10.1037/0022-3514.43.6.1306Google Scholar
Kahneman, D., Knetsch, J. L., & Thaler, R. H. (1986). Fairness and the assumptions of economics. Journal of Business, 59(4), S285S300. https://doi.org/10.2307/2352761Google Scholar
Keri, S., Kiss, I., & Kelemen, O. (2009). Sharing secrets: Oxytocin and trust in schizophrenia. Social Neuroscience, 4(4), 287293. https://doi.org/10.1080/17470910802319710Google Scholar
King-Casas, B., Tomlin, D., Anen, C., Camerer, C. F., Quartz, S. R., & Montague, P. R. (2005). Getting to know you: Reputation and trust in a two-person economic exchange. Science, 308(5718), 7883. https://doi.org/10.1126/science.1108062Google Scholar
Knutson, B., Taylor, J., Kaufman, M., Peterson, R., & Glover, G. (2005). Distributed neural representation of expected value. Journal of Neuroscience, 25(19), 48064812. https://doi.org/10.1523/jneurosci.0642-05.2005Google Scholar
Knutson, B., Wolkowitz, O. M., Cole, S. W., et al. (1998). Selective alteration of personality and social behavior by serotonergic intervention. American Journal of Psychiatry, 155(3), 373379. https://doi.org/10.1176/ajp.155.3.373Google Scholar
Kolbrich, E. A., Goodwin, R. S., Gorelick, D. A., Hayes, R. J., Stein, E. A., & Huestis, M. A. (2008). Plasma pharmacokinetics of 3,4-methylenedioxymethamphetamine after controlled oral administration to young adults. Therapeutic Drug Monitoring, 30(3), 320332. https://doi.org/10.1097/ftd.0b013e3181684fa0Google Scholar
Koscik, T. R., & Tranel, D. (2011). The human amygdala is necessary for developing and expressing normal interpersonal trust. Neuropsychologia, 49(4), 602611. https://doi.org/10.1016/j.neuropsychologia.2010.09.023Google Scholar
Kosfeld, M., Heinrichs, M., Zak, P. J., Fischbacher, U., & Fehr, E. (2005). Oxytocin increases trust in humans. Nature, 435(7042), 673676. https://doi.org/10.1038/nature03701Google Scholar
Krueger, F., McCabe, K., Moll, J., et al. (2007). Neural correlates of trust. Proceedings of the National Academy of Sciences USA, 104(50), 2008420089. https://doi.org/10.1073/pnas.0710103104Google Scholar
Krueger, F., & Meyer-Lindenberg, A. (2019). Toward a model of interpersonal trust drawn from neuroscience, psychology, and economics. Trends in Neuroscience, 42(2), 92101. https://doi.org/10.1016/j.tins.2018.10.004Google Scholar
Kuypers, K. P., de la Torre, R., Farre, M., et al. (2014). No evidence that MDMA-induced enhancement of emotional empathy is related to peripheral oxytocin levels or 5-HT1a receptor activation. PLoS ONE, 9(6), Article e100719. https://doi.org/10.1371/journal.pone.0100719Google Scholar
Lefevre, A., Richard, N., Jazayeri, M., et al. (2017). Oxytocin and serotonin brain mechanisms in the nonhuman primate. Journal of Neuroscience, 37(28), 67416750. https://doi.org/10.1523/jneurosci.0659-17.2017Google Scholar
Levkovitz, Y., Mendlovich, S., Riwkes, S., et al. (2010). A double-blind, randomized study of minocycline for the treatment of negative and cognitive symptoms in early-phase schizophrenia. Journal of Clinical Psychiatry, 71(2), 138149. https://doi.org/10.4088/jcp.08m04666yelGoogle Scholar
Lewicki, R., & Bunker, B. (1995). Trust in relationships. Administrative Science Quarterly, 5(1), 583601. https://doi.org/10.2307/259288Google Scholar
Liechti, M. E., Baumann, C., Gamma, A., & Vollenweider, F. X. (2000). Acute psychological effects of 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”) are attenuated by the serotonin uptake inhibitor citalopram. Neuropsychopharmacology, 22(5), 513521. https://doi.org/10.1016/S0893–133x(99)00148-7CrossRefGoogle ScholarPubMed
Maoz, H., Tsviban, L., Gvirts, H. Z., et al. (2014). Stimulants improve theory of mind in children with attention deficit/hyperactivity disorder. Journal of Psychopharmacology, 28(3), 212219. https://doi.org/10.1177/0269881113492030Google Scholar
Martinez, D., Slifstein, M., Broft, A., et al. (2003). Imaging human mesolimbic dopamine transmission with positron emission tomography. Part II: amphetamine-induced dopamine release in the functional subdivisions of the striatum. Journal of Cerebral Blood Flow & Metabolism, 23(3), 285300. https://doi.org/10.1097/01.wcb.0000048520.34839.1aGoogle Scholar
Mayer, R. C., Davis, J. H., & Schoorman, F. D. (1995). An integrative model of organizational trust. Academy of Management Review, 20(3), 709734. https://doi.org/10.2307/258792Google Scholar
McKnight, D., Cummings, L., & Chervany, N. (1998). Initial trust formation in new organizational relationships. Academy of Management Review, 23, 473490. https://doi.org/10.2307/259290Google Scholar
Mischkowski, D., Crocker, J., & Way, B. M. (2016). From painkiller to empathy killer: Acetaminophen (paracetamol) reduces empathy for pain. Social, Cognitive and Affective Neuroscience, 11(9), 13451353. https://doi.org/10.1093/scan/nsw057Google Scholar
Mithoefer, M. C., Wagner, M. T., Mithoefer, A. T., Jerome, L., & Doblin, R. (2011). The safety and efficacy of {+/-}3,4-methylenedioxymethamphetamine-assisted psychotherapy in subjects with chronic, treatment-resistant posttraumatic stress disorder: The first randomized controlled pilot study. Journal of Psychopharmacology, 25(4), 439452. https://doi.org/10.1177/0269881110378371Google Scholar
Moretto, G., Sellitto, M., & di Pellegrino, G. (2013). Investment and repayment in a trust game after ventromedial prefrontal damage. Frontiers in Human Neuroscience, 7, Article 593. https://doi.org/10.3389/fnhum.2013.00593Google Scholar
Munro, C. A., McCaul, M. E., Wong, D. F., et al. (2006). Sex differences in striatal dopamine release in healthy adults. Biological Psychiatry, 59(10), 966974. https://doi.org/10.1016/j.biopsych.2006.01.008Google Scholar
Munzar, P., Li, H., Nicholson, K. L., Wiley, J. L., & Balster, R. L. (2002). Enhancement of the discriminative stimulus effects of phencyclidine by the tetracycline antibiotics doxycycline and minocycline in rats. Psychopharmacology (Berl), 160(3), 331336. https://doi.org/10.1007/s00213–001-0989-7Google Scholar
Murray, A. M., Ryoo, H. L., Gurevich, E., & Joyce, J. N. (1994). Localization of dopamine D3 receptors to mesolimbic and D2 receptors to mesostriatal regions of human forebrain. Proceedings of the National Academy of Sciences USA, 91(23), 1127111275. https://doi.org/10.1073/pnas.91.23.11271Google Scholar
Neigh, G. N., Karelina, K., Glasper, E. R., et al. (2009). Anxiety after cardiac arrest/cardiopulmonary resuscitation: Exacerbated by stress and prevented by minocycline. Stroke, 40(11), 36013607. https://doi.org/10.1161/strokeaha.109.564146Google Scholar
Nelson, E. E., & Panksepp, J. (1998). Brain substrates of infant-mother attachment: Contributions of opioids, oxytocin, and norepinephrine. Neuroscience & Biobehavioral Reviews, 22(3), 437452. https://doi.org/10.1016/s0149–7634(97)00052-3Google Scholar
Oehen, P., Traber, R., Widmer, V., & Schnyder, U. (2013). A randomized, controlled pilot study of MDMA (+/- 3,4-Methylenedioxymethamphetamine)-assisted psychotherapy for treatment of resistant, chronic post-traumatic stress disorder (PTSD). Journal of Psychopharmacology, 27(1), 4052. https://doi.org/10.1177/0269881112464827Google Scholar
Panksepp, J. (2009). Affective neuroscience. Oxford University Press.Google Scholar
Pessiglione, M., Seymour, B., Flandin, G., Dolan, R. J., & Frith, C. D. (2006). Dopamine-dependent prediction errors underpin reward-seeking behaviour in humans. Nature, 442(7106), 10421045. https://doi.org/10.1038/nature05051Google Scholar
Petersen, N., Kilpatrick, L. A., Goharzad, A., & Cahill, L. (2014). Oral contraceptive pill use and menstrual cycle phase are associated with altered resting state functional connectivity. NeuroImage, 90, 2432. https://doi.org/10.1016/j.neuroimage.2013.12.016Google Scholar
Rahman, S., Robbins, T. W., Hodges, J. R., et al. (2006). Methylphenidate (“Ritalin”) can ameliorate abnormal risk-taking behavior in the frontal variant of frontotemporal dementia. Neuropsychopharmacology, 31(3), 651658. https://doi.org/10.1038/sj.npp.1300886Google Scholar
Ratala, C. E., Fallon, S. J., Van der Schaaf, M. E., Ter Huurne, N., Cools, R., & Sanfey, A. G. (2019). Catecholaminergic modulation of trust decisions. Psychopharmacology (Berl), 236(6), 18071816. https://doi.org/10.1007/s00213–019-5165-zGoogle Scholar
Riba, J., Kramer, U. M., Heldmann, M., Richter, S., & Munte, T. F. (2008). Dopamine agonist increases risk taking but blunts reward-related brain activity. PLoS ONE, 3(6), Article e2479. https://doi.org/10.1371/journal.pone.0002479Google Scholar
Riedl, R., & Javor, A. (2012). The biology of trust: Integrating evidence from genetics, endocrinology, and functional brain imaging. Journal of Neuroscience, Psychology, and Economics, 5(2), 6391. https://doi.org/10.1037/a0026318Google Scholar
Rilling, J., Gutman, D., Zeh, T., Pagnoni, G., Berns, G., & Kilts, C. (2002). A neural basis for social cooperation. Neuron, 35(2), 395405. https://doi.org/10.1016/s0896–6273(02)00755-9Google Scholar
Robbins, T. W., & Arnsten, A. F. (2009). The neuropsychopharmacology of fronto-executive function: Monoaminergic modulation. Annual Review of Neuroscience, 32, 267287. https://doi.org/10.1146/annurev.neuro.051508.135535Google Scholar
Roberts, I. D., Krajbich, I., & Way, B. M. (2019). Acetaminophen influences social and economic trust. Scientific Reports, 9(1), Article 4060. https://doi.org/10.1038/s41598–019-40093-9Google Scholar
Robson, S. E., Repetto, L., Gountouna, V. E., & Nicodemus, K. K. (2020). A review of neuroeconomic gameplay in psychiatric disorders. Molecular Psychiatry, 25(1), 6781. https://doi.org/10.1038/s41380–019-0405-5Google Scholar
Rothstein, B., & Uslaner, E. M. (2005). All for all: Equality, corruption, and social trust. World Politics, 58, 4172. https://doi.org/10.1353/wp.2006.0022Google Scholar
Rudnick, G., & Wall, S. C. (1992). The molecular mechanism of “ecstasy” [3,4-methylenedioxy-methamphetamine (MDMA)]: Serotonin transporters are targets for MDMA-induced serotonin release. Proceedings of the National Academy of Sciences USA, 89(5), 18171821. https://doi.org/10.1073/pnas.89.5.1817Google Scholar
Schiavone, S., Sorce, S., Dubois-Dauphin, M., et al. (2009). Involvement of NOX2 in the development of behavioral and pathologic alterations in isolated rats. Biological Psychiatry, 66(4), 384392. https://doi.org/10.1016/j.biopsych.2009.04.033Google Scholar
Schmid, Y., Hysek, C. M., Simmler, L. D., Crockett, M. J., Quednow, B. B., & Liechti, M. E. (2014). Differential effects of MDMA and methylphenidate on social cognition. Journal of Psychopharmacology, 28(9), 847856. https://doi.org/10.1177/0269881114542454Google Scholar
Schmidt, C. J., Wu, L., & Lovenberg, W. (1986). Methylenedioxymethamphetamine: A potentially neurotoxic amphetamine analogue. European Journal of Pharmacology, 124(1–2), 175178. https://doi.org/10.1016/0014-2999(86)90140-8Google Scholar
Schroeder, K. B., McElreath, R., & Nettle, D. (2013). Variants at serotonin transporter and 2A receptor genes predict cooperative behavior differentially according to presence of punishment. Proceedings of the National Academy of Sciences USA, 110(10), 39553960. https://doi.org/10.1073/pnas.1216841110Google Scholar
Schweiger, D., Stemmler, G., Burgdorf, C., & Wacker, J. (2014). Opioid receptor blockade and warmth-liking: Effects on interpersonal trust and frontal asymmetry. Social, Cognitive and Affective Neuroscience, 9(10), 16081615. https://doi.org/10.1093/scan/nst152Google Scholar
Sekine, Y., Ouchi, Y., Sugihara, G., et al. (2008). Methamphetamine causes microglial activation in the brains of human abusers. Journal of Neuroscience, 28(22), 57565761. https://doi.org/10.1523/jneurosci.1179-08.2008Google Scholar
Selvaraj, S., Turkheimer, F., Rosso, L., et al. (2012). Measuring endogenous changes in serotonergic neurotransmission in humans: A [11C]CUMI-101 PET challenge study. Molecular Psychiatry, 17(12), 12541260. https://doi.org/10.1038/mp.2012.78Google Scholar
Seymour, B., Daw, N. D., Roiser, J. P., Dayan, P., & Dolan, R. (2012). Serotonin selectively modulates reward value in human decision making. Journal of Neuroscience, 32(17), 58335842. https://doi.org/10.1523/jneurosci.0053-12.2012Google Scholar
Shiels, K., Hawk, L. W., Reynolds, B., et al. (2009). Effects of methylphenidate on discounting of delayed rewards in attention deficit/hyperactivity disorder. Experimental and Clinical Psychopharmacology, 17(5), 291301. https://doi.org/10.1037/a0017259Google Scholar
Snyder, R., Turgay, A., Aman, M., et al. (2002). Effects of risperidone on conduct and disruptive behavior disorders in children with subaverage IQs. Journal of the American Academy of Child and Adolescent Psychiatry, 41(9), 10261036. https://doi.org/10.1097/00004583-200209000-00002Google Scholar
Sokoloff, P., Diaz, J., Le Foll, B., et al. (2006). The dopamine D3 receptor: A therapeutic target for the treatment of neuropsychiatric disorders. CNS & Neurological Disorders Drug Targets, 5(1), 2543. https://doi.org/10.2174/187152706784111551Google Scholar
Soutschek, A., Burke, C. J., Raja Beharelle, A., et al. (2017). The dopaminergic reward system underpins gender differences in social preferences. Nature Human Behavior, 1(11), 819827. https://doi.org/10.1038/s41562-017-0226-yGoogle Scholar
Steiner, J., Bielau, H., Brisch, R., et al. (2008). Immunological aspects in the neurobiology of suicide: Elevated microglial density in schizophrenia and depression is associated with suicide. Journal of Psychiatric Research, 42(2), 151157. https://doi.org/10.1016/j.jpsychires.2006.10.013Google Scholar
Steiner, J., Mawrin, C., Ziegeler, A., et al. (2006). Distribution of HLA-DR-positive microglia in schizophrenia reflects impaired cerebral lateralization. Acta Neuropathologica, 112(3), 305316. https://doi.org/10.1007/s00401–006-0090-8Google Scholar
Stewart, L. H., Ferguson, B., Morgan, C. J., et al. (2014). Effects of ecstasy on cooperative behaviour and perception of trustworthiness: A naturalistic study. Journal of Psychopharmacology, 28(11), 10011008. https://doi.org/10.1177/0269881114544775Google Scholar
Sun, H., Verbeke, W., Pozharliev, R., Bagozzi, R. P., Babiloni, F., & Wang, L. (2019). Framing a trust game as a power game greatly affects interbrain synchronicity between trustor and trustee. Social Neuroscience, 14(6), 635648. https://doi.org/10.1080/17470919.2019.1566171Google Scholar
Tancer, M., & Johanson, C. E. (2003). Reinforcing, subjective, and physiological effects of MDMA in humans: A comparison with d-amphetamine and mCPP. Drug and Alcohol Dependence, 72(1), 3344. https://doi.org/10.1016/s0376–8716(03)00172-8Google Scholar
Thompson, M. R., Callaghan, P. D., Hunt, G. E., Cornish, J. L., & McGregor, I. S. (2007). A role for oxytocin and 5-HT(1A) receptors in the prosocial effects of 3,4 methylenedioxymethamphetamine (“ecstasy”). Neuroscience, 146(2), 509514. https://doi.org/10.1016/j.neuroscience.2007.02.032Google Scholar
Todorov, A., Pakrashi, M., & Oosterhof, N. (2009). Evaluating faces on trustworthiness after minimal time exposure. Social Cognition, 27(6), 813833. https://doi.org/10.1521/soco.2009.27.6.813Google Scholar
Trezza, V., Damsteegt, R., Achterberg, E. J., & Vanderschuren, L. J. (2011). Nucleus accumbens mu-opioid receptors mediate social reward. Journal of Neuroscience, 31(17), 63626370. https://doi.org/10.1523/jneurosci.5492-10.2011Google Scholar
Tse, W. S., Wong, A. S., Chan, F., Pang, A. H., Bond, A. J., & Chan, C. K. (2016). Different mechanisms of risperidone result in improved interpersonal trust, social engagement and cooperative behavior in patients with schizophrenia compared to trifluoperazine. Psychiatry and Clinical Neurosciences, 70(5), 218226. https://doi.org/10.1111/pcn.12382Google Scholar
Tzieropoulos, H. (2013). The trust game in neuroscience: A short review. Social Neuroscience, 8(5), 407416. https://doi.org/10.1080/17470919.2013.832375Google Scholar
Van’t Wout, M., & Sanfey, A. G. (2008). Friend or foe: The effect of implicit trustworthiness judgments in social decision making. Cognition, 108(3), 796803. https://doi.org/10.1016/j.cognition.2008.07.002Google Scholar
Van Berckel, B. N., Bossong, M. G., Boellaard, R., et al. (2008). Microglia activation in recent-onset schizophrenia: A quantitative (R)-[11C]PK11195 positron emission tomography study. Biological Psychiatry, 64(9), 820822. https://doi.org/10.1016/j.biopsych.2008.04.025Google Scholar
Volkow, N. D., Wang, G. J., Fowler, J. S., & Ding, Y. S. (2005). Imaging the effects of methylphenidate on brain dopamine: New model on its therapeutic actions for attention-deficit/hyperactivity disorder. Biological Psychiatry, 57(11), 14101415. https://doi.org/10.1016/j.biopsych.2004.11.006Google Scholar
Wardle, M. C., & de Wit, H. (2012). Effects of amphetamine on reactivity to emotional stimuli. Psychopharmacology (Berl), 220(1), 143153. https://doi.org/10.1007/s00213–011-2498-7Google Scholar
Watabe, M., Kato, T. A., Monji, A., Horikawa, H., & Kanba, S. (2012). Does minocycline, an antibiotic with inhibitory effects on microglial activation, sharpen a sense of trust in social interaction? Psychopharmacology (Berl), 220(3), 551557. https://doi.org/10.1007/s00213–011-2509-8Google Scholar
Watson, D., Clark, L. A., & Tellegen, A. (1988). Development and validation of brief measures of positive and negative affect: The PANAS scales. Journal of Personality and Social Psychology, 54(6), 10631070. https://doi.org/10.1037//0022-3514.54.6.1063Google Scholar
Willis, J., & Todorov, A. (2006). First impressions: Making up your mind after a 100-ms exposure to a face. Psychological Science, 17(7), 592598. https://doi.org/10.1111/j.1467-9280.2006.01750.xGoogle Scholar
Winston, J. S., Strange, B. A., O’Doherty, J., & Dolan, R. J. (2002). Automatic and intentional brain responses during evaluation of trustworthiness of faces. Nature Neuroscience, 5(3), 277283. https://doi.org/10.1038/nn816Google Scholar
Wolff, K., Tsapakis, E. M., Winstock, A. R., et al. (2006). Vasopressin and oxytocin secretion in response to the consumption of ecstasy in a clubbing population. Journal of Psychopharmacology, 20(3), 400410. https://doi.org/10.1177/0269881106061514Google Scholar
Wu, Y., Lousberg, E. L., Moldenhauer, L. M., et al. (2011). Attenuation of microglial and IL-1 signaling protects mice from acute alcohol-induced sedation and/or motor impairment. Brain, Behavior, and Immunity, 25(Suppl. 1), S155–164. https://doi.org/10.1016/j.bbi.2011.01.012Google Scholar
Yamagishi, T., & Yamagishi, M. (1994). Trust and commitment in the United States and Japan. Motivation and Emotion, 18, 129166. https://doi.org/10.1007/bf02249397Google Scholar
Young, L. J., Lim, M. M., Gingrich, B., & Insel, T. R. (2001). Cellular mechanisms of social attachment. Hormones and Behavior, 40(2), 133138. https://doi.org/10.1006/hbeh.2001.1691Google Scholar

References

Andari, E., Schneider, F. C., Mottolese, R., Vindras, P., & Sirigu, A. (2014). Oxytocin’s fingerprint in personality traits and regional brain volume. Cerebral Cortex, 24(2), 479486. https://doi.org/10.1093/cercor/bhs328Google Scholar
Apicella, C. L., Cesarini, D., Johannesson, M., et al. (2010). No association between oxytocin receptor (OXTR) gene polymorphisms and experimentally elicited social preferences. PLoS ONE, 5(6), Article e11153. https://doi.org/10.1371/journal.pone.0011153Google Scholar
Arney, K. (2018). How to code a human: Exploring the DNA blueprints that make us who we are. Andre Deutsch.Google Scholar
Avinun, R., Ebstein, R. P., & Knafo, A. (2012). Human maternal behaviour is associated with arginine vasopressin receptor 1A gene. Biology Letters, 8(5), 894896. https://doi.org/10.1098/rsbl.2012.0492Google Scholar
Barberis, C., & Tribollet, E. (1996). Vasopressin and oxytocin receptors in the central nervous system. Critical Reviews in Neurobiology, 10(1), 119154. https://doi.org/10.1615/CritRevNeurobiol.v10.i1.60Google Scholar
Bartz, J. A., Zaki, J., Bolger, N., & Ochsner, K. N. (2011). Social effects of oxytocin in humans: Context and person matter. Trends in Cognitive Sciences, 15(7), 301309. https://doi.org/10.1016/j.tics.2011.05.002Google Scholar
Baumgartner, T., Heinrichs, M., Vonlanthen, A., Fischbacher, U., & Fehr, E. (2008). Oxytocin shapes the neural circuitry of trust and trust adaptation in humans. Neuron, 58(4), 639650. https://doi.org/10.1016/j.neuron.2008.04.009Google Scholar
Berg, J., Dickhaut, J., & McCabe, K. (1995). Trust, reciprocity, and social history. Games and Economic Behavior, 10(1), 122142. https://doi.org/10.1006/game.1995.1027Google Scholar
Blume, A., Bosch, O. J., Miklos, S., et al. (2008). Oxytocin reduces anxiety via ERK1/2 activation: Local effect within the rat hypothalamic paraventricular nucleus. European Journal of Neuroscience, 27(8), 19471956. https://doi.org/10.1111/j.1460-9568.2008.06184.xGoogle Scholar
Brunnlieb, C., Münte, T. F., Tempelmann, C., & Heldmann, M. (2013). Vasopressin modulates neural responses related to emotional stimuli in the right amygdala. Brain Research, 1499, 2942. https://doi.org/10.1016/j.brainres.2013.01.009Google Scholar
Camerer, C. F. (2011). Behavioral game theory: Experiments in strategic interaction. Princeton University Press.Google Scholar
Cesarini, D., Dawes, C. T., Fowler, J. H., Johannesson, M., Lichtenstein, P., & Wallace, B. (2008). Heritability of cooperative behavior in the trust game. Proceedings of the National Academy of Sciences, 105(10), 37213726. https://doi.org/10.1073/pnas.0710069105Google Scholar
Champagne, F., Diorio, J., Sharma, S., & Meaney, M. J. (2001). Naturally occurring variations in maternal behavior in the rat are associated with differences in estrogen-inducible central oxytocin receptors. Proceedings of the National Academy of Sciences, 98(22), 1273612741. https://doi.org/10.1073/pnas.221224598Google Scholar
Crockford, C., Deschner, T., Ziegler, T. E., & Wittig, R. M. (2014). Endogenous peripheral oxytocin measures can give insight into the dynamics of social relationships: A review. Frontiers in Behavioral Neuroscience, 8, Article 68. https://doi.org/10.3389/fnbeh.2014.00068Google Scholar
De Dreu, C. K., Greer, L. L., Handgraaf, M. J., et al. (2010). The neuropeptide oxytocin regulates parochial altruism in intergroup conflict among humans. Science, 328(5984), 14081411. https://doi.org/10.1126/science.1189047Google Scholar
Declerck, C. H., Boone, C., Pauwels, L., Vogt, B., & Fehr, E. (2020). A registered replication study on oxytocin and trust. Nature Human Behaviour, 4, 646655. https://doi.org/10.1038/s41562-020-0878-xGoogle Scholar
Delgado, M. R., Frank, R. H., & Phelps, E. A. (2005). Perceptions of moral character modulate the neural systems of reward during the trust game. Nature Neuroscience, 8(11), 16111618. https://doi.org/10.1038/nn1575Google Scholar
Ding, Y. C., Chi, H. C., Grady, D. L., et al. (2002). Evidence of positive selection acting at the human dopamine receptor D4 gene locus. Proceedings of the National Academy of Sciences, 99(1), 309314. https://doi.org/10.1073/pnas.012464099Google Scholar
Domes, G., Heinrichs, M., Michel, A., Berger, C., & Herpertz, S. C. (2007). Oxytocin improves “mind-reading” in humans. Biological Psychiatry, 61(6), 731733. https://doi.org/10.1016/j.biopsych.2006.07.015Google Scholar
Dreber, A., Rand, D. G., Wernerfelt, N., Montgomery, C., & Malhotra, D. K. (2012). Genetic correlates of economic and social risk taking. SSRN. https://doi.org/10.2139/ssrn.2141601Google Scholar
Feldman, R. (2012). Oxytocin and social affiliation in humans. Hormones and Behavior, 61(3), 380391. https://doi.org/10.1016/j.yhbeh.2012.01.008Google Scholar
Feldman, R. (2015). Sensitive periods in human social development: New insights from research on oxytocin, synchrony, and high-risk parenting. Development and Psychopathology, 27(2), 369395. https://doi.org/10.1017/S0954579415000048Google Scholar
Fox, E., Ridgewell, A., & Ashwin, C. (2009). Looking on the bright side: Biased attention and the human serotonin transporter gene. Proceedings of the Royal Society B: Biological Sciences, 276(1663), 17471751. https://doi.org/10.1098/rspb.2008.1788Google Scholar
Heinrichs, M., Baumgartner, T., Kirschbaum, C., & Ehlert, U. (2003). Social support and oxytocin interact to suppress cortisol and subjective responses to psychosocial stress. Biological Psychiatry, 54(12), 13891398. https://doi.org/10.1016/S0006-3223(03)00465-7Google Scholar
Heinrichs, M., & Domes, G. (2008). Neuropeptides and social behaviour: Effects of oxytocin and vasopressin in humans. Progress in Brain Research, 170, 337350. https://doi.org/10.1016/S0079-6123(08)00428-7Google Scholar
Hiraishi, K., Yamagata, S., Shikishima, C., & Ando, J. (2008). Maintenance of genetic variation in personality through control of mental mechanisms: A test of trust, extraversion, and agreeableness. Evolution and Human Behavior, 29(2), 7985. https://doi.org/10.1016/j.evolhumbehav.2007.07.004Google Scholar
Hopkins, W. D., Donaldson, Z. R., & Young, L. J. (2012). A polymorphic indel containing the RS3 microsatellite in the 5′ flanking region of the vasopressin V1a receptor gene is associated with chimpanzee (Pan troglodytes) personality. Genes, Brain and Behavior, 11(5), 552558. https://doi.org/10.1111/j.1601-183X.2012.00799.xGoogle Scholar
Humphrey, J., & Schmitz, H. (1998). Trust and inter‐firm relations in developing and transition economies. The Journal of Development Studies, 34(4), 3261. https://doi.org/10.1080/00220389808422528Google Scholar
Hung, L. W., Neuner, S., Polepalli, J. S., et al. (2017). Gating of social reward by oxytocin in the ventral tegmental area. Science, 357(6358), 14061411. https://doi.org/10.1126/science.aan4994Google Scholar
Inglehart, R. (1997). Modernization and postmodernization: Cultural, economic, and political change in 43 societies. Princeton University Press. https://doi.org/10.2307/j.ctv10vm2nsGoogle Scholar
Inoue, T., Kimura, T., Azuma, C., et al. (1994). Structural organization of the human oxytocin receptor gene. The Journal of Biological Chemistry, 269(51), 3245132456Google Scholar
Inoue-Murayama, M., Yokoyama, C., Yamanashi, Y., & Weiss, A. (2018). Common marmoset (Callithrix jacchus) personality, subjective well-being, hair cortisol level and AVPR1a, OPRM1, and DAT genotypes. Scientific Reports, 8(1), 115. https://doi.org/10.1038/s41598-018-28112-7Google Scholar
Kim, H. S., Sherman, D. K., Mojaverian, T., et al. (2011). Gene–culture interaction: Oxytocin receptor polymorphism (OXTR) and emotion regulation. Social Psychological and Personality Science, 2(6), 665672. https://doi.org/10.1177/1948550611405854Google Scholar
Kim, H. S., Sherman, D. K., Sasaki, J. Y., et al. (2010). Culture, distress, and oxytocin receptor polymorphism (OXTR) interact to influence emotional support seeking. Proceedings of the National Academy of Sciences, 107(36), 1571715721. https://doi.org/10.1073/pnas.1010830107Google Scholar
King-Casas, B., Tomlin, D., Anen, C., Camerer, C. F., Quartz, S. R., & Montague, P. R. (2005). Getting to know you: Reputation and trust in a two-person economic exchange. Science, 308(5718), 7883. https://doi.org/10.1126/science.1108062Google Scholar
Kirsch, P., Esslinger, C., Chen, Q., et al. (2005). Oxytocin modulates neural circuitry for social cognition and fear in humans. Journal of Neuroscience, 25(49), 1148911493. https://doi.org/10.1523/JNEUROSCI.3984-05.2005Google Scholar
Kiyonari, T., Yamagishi, T., Cook, K. S., & Cheshire, C. (2006). Does trust beget trustworthiness? Trust and trustworthiness in two games and two cultures: A research note. Social Psychology Quarterly, 69(3), 270283. https://doi.org/10.1177/019027250606900304Google Scholar
Knafo, A., Israel, S., Darvasi, A., et al. (2008). Individual differences in allocation of funds in the dictator game associated with length of the arginine vasopressin 1a receptor RS3 promoter region and correlation between RS3 length and hippocampal mRNA. Genes, Brain and Behavior, 7(3), 266275. https://doi.org/10.1111/j.1601-183X.2007.00341.xGoogle Scholar
Kong, D. T. (2015). A gene-environment interaction model of social trust: The 5-HTTLPR s-allele prevalence as a moderator for the democracy-trust linkage. Personality & Individual Differences, 87, 278281. https://doi.org/10.1016/j.paid.2015.08.028Google Scholar
Kosfeld, M., Heinrichs, M., Zak, P. J., Fischbacher, U., & Fehr, E. (2005). Oxytocin increases trust in humans. Nature, 435(7042), 673676. https://doi.org/10.1038/nature03701Google Scholar
Krueger, F., McCabe, K., Moll, J., et al. (2007). Neural correlates of trust. Proceedings of the National Academy of Sciences, 104(50), 2008420089. https://doi.org/10.1073/pnas.0710103104Google Scholar
Krueger, F., Parasuraman, R., Iyengar, V., et al. (2012). Oxytocin receptor genetic variation promotes human trust behavior. Frontiers in Human Neuroscience, 6, Article 4. https://doi.org/10.3389/fnhum.2012.00004Google Scholar
Lesch, K. P., Meyer, J., Glatz, K., et al. (1997). The 5-HT transporter gene-linked polymorphic region (5-HTTLPR) in evolutionary perspective: Alternative biallelic variation in rhesus monkeys. Journal of Neural Transmission, 104(11–12), 12591266. https://doi.org/10.1007/bf01294726Google Scholar
Liu, Y., & Wang, Z. X. (2003). Nucleus accumbens oxytocin and dopamine interact to regulate pair bond formation in female prairie voles. Neuroscience, 121(3), 537544. https://doi.org/10.1016/S0306-4522(03)00555-4Google Scholar
Loup, F., Tribollet, E., Dubois-Dauphin, M., & Dreifuss, J. J. (1991). Localization of high-affinity binding sites for oxytocin and vasopressin in the human brain. An autoradiographic study. Brain Research, 555(2), 220232. https://doi.org/10.1016/0006-8993(91)90345-VGoogle Scholar
Manuck, S. B., & McCaffery, J. M. (2014). Gene-environment interaction. Annual Review of Psychology, 65, 4170. https://doi.org/10.1146/annurev-psych-010213-115100Google Scholar
Marek, S., Tervo-Clemmens, B., Calabro, F. J., et al. (2020). Towards reproducible brain-wide association studies. bioRxiv. https://doi.org/10.1101/2020.08.21.257758Google Scholar
McCabe, K., Houser, D., Ryan, L., Smith, V., & Trouard, T. (2001). A functional imaging study of cooperation in two-person reciprocal exchange. Proceedings of the National Academy of Sciences, 98(20), 1183211835. https://doi.org/10.1073/pnas.211415698Google Scholar
Meyer-Lindenberg, A., Domes, G., Kirsch, P., & Heinrichs, M. (2011). Oxytocin and vasopressin in the human brain: Social neuropeptides for translational medicine. Nature Reviews Neuroscience, 12(9), 524538. https://doi.org/10.1038/nrn3044Google Scholar
Mifune, N., & Li, Y. (2018). Trust in the faith game. Psychologia, 61(2), 7088. https://doi.org/10.2117/psysoc.2019-B008Google Scholar
Nave, G., Camerer, C., & McCullough, M. (2015). Does oxytocin increase trust in humans? A critical review of research. Perspectives on Psychological Science, 10(6), 772789. https://doi.org/10.1177/1745691615600138Google Scholar
Nishina, K., Takagishi, H., Fermin, A. S. R., et al. (2018). Association of the oxytocin receptor gene with attitudinal trust: Role of amygdala volume. Social Cognitive and Affective Neuroscience, 13(10), 10911097. https://doi.org/10.1093/scan/nsy075Google Scholar
Nishina, K., Takagishi, H., Inoue-Murayama, M., Takahashi, H., & Yamagishi, T. (2015). Polymorphism of the oxytocin receptor gene modulates behavioral and attitudinal trust among men but not women. PLoS ONE, 10(10), Article e0137089. https://doi.org/10.1371/journal.pone.0137089Google Scholar
Nishina, K., Takagishi, H., Takahashi, H., Sakagami, M., & Inoue-Murayama, M. (2019). Association of polymorphism of arginine-vasopressin receptor 1A (AVPR1a) gene with trust and reciprocity. Frontiers in Human Neuroscience, 13, Article 230. https://doi.org/10.3389/fnhum.2019.00230Google Scholar
Oskarsson, S., Dawes, C., Johannesson, M., & Magnusson, P. K. (2012). The genetic origins of the relationship between psychological traits and social trust. Twin Research and Human Genetics, 15(1), 2133. https://doi.org/10.1375/twin.15.1.21Google Scholar
Putnam, R. D., Leonardi, R., & Nanetti, R. Y. (1994). Making democracy work: Civic traditions in modern Italy. Princeton University Press.Google Scholar
Reimann, M., Schilke, O., & Cook, K. S. (2017). Trust is heritable, whereas distrust is not. Proceedings of the National Academy of Sciences, 114(27), 70077012. https://doi.org/10.1073/pnas.1617132114Google Scholar
Riedl, R., & Javor, A. (2012). The biology of trust: Integrating evidence from genetics, endocrinology, and functional brain imaging. Journal of Neuroscience, Psychology, and Economics, 5(2), 6391. https://doi.org/10.1037/a0026318Google Scholar
Romano, A., Balliet, D., Yamagishi, T., & Liu, J. H. (2017). Parochial trust and cooperation across 17 societies. Proceedings of the National Academy of Sciences, 114(48), 1270212707. https://doi.org/10.1073/pnas.1712921114Google Scholar
Rotter, J. B. (1967). A new scale for the measurement of interpersonal trust. Journal of Personality, 35(4), 651665. https://doi.org/10.1111/j.1467-6494.1967.tb01454.xGoogle Scholar
Sasaki, J. Y., Kim, H. S., & Xu, J. (2011). Religion and well-being: The moderating role of culture and the oxytocin receptor (OXTR) gene. Journal of Cross-Cultural Psychology, 42(8), 13941405. https://doi.org/10.1177/0022022111412526Google Scholar
Savitz, J. B., & Ramesar, R. S. (2004). Genetic variants implicated in personality: A review of the more promising candidates. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 131(1), 2032. https://doi.org/10.1002/ajmg.b.20155Google Scholar
Shahrokh, D. K., Zhang, T. Y., Diorio, J., Gratton, A., & Meaney, M. J. (2010). Oxytocin-dopamine interactions mediate variations in maternal behavior in the rat. Endocrinology, 151(5), 22762286. https://doi.org/10.1210/en.2009-1271Google Scholar
Shalev, I., Israel, S., Uzefovsky, F., Gritsenko, I., Kaitz, M., & Ebstein, R. P. (2011). Vasopressin needs an audience: Neuropeptide elicited stress responses are contingent upon perceived social evaluative threats. Hormones and Behavior, 60(1), 121127. https://doi.org/10.1016/j.yhbeh.2011.04.005Google Scholar
Simpson, J. A. (2007). Foundations of interpersonal trust. In Kruglanski, A. W. & Higgins, E. T. (Eds.), Social psychology: Handbook of basic principles (pp. 587607). The Guilford Press.Google Scholar
Sturgis, P., Read, S., Hatemi, P. K., et al. (2010). A genetic basis for social trust? Political Behavior, 32(2), 205230. https://doi.org/10.1007/s11109-009-9101-5Google Scholar
Takagishi, H. (2020). The role of oxytocin in prosocial behavior. Psychology World, 91, 1316 (written in Japanese). https://psych.or.jp/publication/world091/pw05Google Scholar
Thibonnier, M., Graves, M. K., Wagner, M. S., Auzan, C., Clauser, E., & Willard, H. F. (1996). Structure, sequence, expression, and chromosomal localization of the human v1avasopressin receptor gene. Genomics, 31(3), 327334. https://doi.org/10.1006/geno.1996.0055Google Scholar
Tost, H., Kolachana, B., Hakimi, S., et al. (2010). A common allele in the oxytocin receptor gene (OXTR) impacts prosocial temperament and human hypothalamic-limbic structure and function. Proceedings of the National Academy of Sciences, 107(31), 1393613941. https://doi.org/10.1073/pnas.1003296107Google Scholar
Tribollet, E., Dubois‐Dauphin, M., Dreifuss, J. J., Barberis, C., & Jard, S. (1992). Oxytocin receptors in the central nervous system: Distribution, development, and species differences. Annals of the New York Academy of Sciences, 652(1), 2938. https://doi.org/10.1111/j.1749-6632.1992.tb34343.xGoogle Scholar
Walum, H., Waldman, I. D., & Young, L. J. (2016). Statistical and methodological considerations for the interpretation of intranasal oxytocin studies. Biological Psychiatry, 79(3), 251257. https://doi.org/10.1016/j.biopsych.2015.06.016Google Scholar
Walum, H., Westberg, L., Henningsson, S., et al. (2008). Genetic variation in the vasopressin receptor 1a gene (AVPR1A) associates with pair-bonding behavior in humans. Proceedings of the National Academy of Sciences, 105(37), 1415314156. https://doi.org/10.1073/pnas.0803081105Google Scholar
Wang, J., Qin, W., Liu, B., et al. (2014). Neural mechanisms of oxytocin receptor gene mediating anxiety-related temperament. Brain Structure and Function, 219(5), 15431554. https://doi.org/10.1007/s00429-013-0584-9Google Scholar
Wang, J., Qin, W., Liu, F., et al. (2016). Sex‐specific mediation effect of the right fusiform face area volume on the association between variants in repeat length of AVPR1A RS3 and altruistic behavior in healthy adults. Human Brain Mapping, 37(7), 27002709. https://doi.org/10.1002/hbm.23203Google Scholar
Windle, R. J., Shanks, N., Lightman, S. L., & Ingram, C. D. (1997). Central oxytocin administration reduces stress-induced corticosterone release and anxiety behavior in rats. Endocrinology, 138(7), 28292834. https://doi.org/10.1210/endo.138.7.5255Google Scholar
Yamagishi, T. (2011). Trust: The evolutionary game of mind and society. Springer Science & Business Media. https://doi.org/10.1007/978-4-431-53936-0Google Scholar
Yamagishi, T., & Yamagishi, M. (1994). Trust and commitment in the United States and Japan. Motivation and Emotion, 18(2), 129166. https://doi.org/10.1007/BF02249397Google Scholar
Yamagishi, T., Akutsu, S., Cho, K., Inoue, Y., Li, Y., & Matsumoto, Y. (2015). Two-component model of general trust: Predicting behavioral trust from attitudinal trust. Social Cognition, 33(5), 436458. https://doi.org/10.1521/soco.2015.33.5.436Google Scholar
Yamagishi, T., Kikuchi, M., & Kosugi, M. (1999). Trust, gullibility, and social intelligence. Asian Journal of Social Psychology, 2(1), 145161. https://doi.org/10.1111/1467-839X.00030Google Scholar
Yamagishi, T., Matsumoto, Y., Kiyonari, T., et al. (2017). Response time in economic games reflects different types of decision conflict for prosocial and proself individuals. Proceedings of the National Academy of Sciences, 114(24), 63946399. https://doi.org/10.1073/pnas.1608877114Google Scholar
Zak, P. J., & Knack, S. (2001). Trust and growth. The Economic Journal, 111(470), 295321. https://doi.org/10.1111/1468-0297.00609Google Scholar
Zheng, S., Masuda, T., Matsunaga, M., et al. (2020). Oxytocin receptor gene (OXTR) and childhood adversity influence trust. Psychoneuroendocrinology, 121, Article 104840. https://doi.org/10.1016/j.psyneuen.2020.104840Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Neuromolecular Level of Trust
  • Edited by Frank Krueger, George Mason University, Virginia
  • Book: The Neurobiology of Trust
  • Online publication: 09 December 2021
  • Chapter DOI: https://doi.org/10.1017/9781108770880.017
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Neuromolecular Level of Trust
  • Edited by Frank Krueger, George Mason University, Virginia
  • Book: The Neurobiology of Trust
  • Online publication: 09 December 2021
  • Chapter DOI: https://doi.org/10.1017/9781108770880.017
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Neuromolecular Level of Trust
  • Edited by Frank Krueger, George Mason University, Virginia
  • Book: The Neurobiology of Trust
  • Online publication: 09 December 2021
  • Chapter DOI: https://doi.org/10.1017/9781108770880.017
Available formats
×