Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-10T17:45:04.460Z Has data issue: false hasContentIssue false

9 - Nutritional factors and schizophrenia

Published online by Cambridge University Press:  04 August 2010

Sahebarao P. Mahadik
Affiliation:
Medical College of Georgia and VA Medical Center, Augusta, USA
Matcheri S. Keshavan
Affiliation:
University of Pittsburgh
James L. Kennedy
Affiliation:
Clarke Institute of Psychiatry, Toronto
Robin M. Murray
Affiliation:
Institute of Psychiatry, London
Get access

Summary

This chapter discusses the role of essential nutritional factors such as amino acids, lipids, vitamins, and minerals on the course and outcome of schizophrenia. Both under- and malnutrition have been found to impair the brain and behavioral development, as well as affect the health of the body and mind in the adult. Arachidonic acid (AA) and docosahexaenoic acid (DHA) make 50% of the fatty acids that are attached to brain phospholipids, which comprise almost 60% of brain mass. Many factors influence the dietary intake of essential polyunsaturated fatty acids (EPUFAs) by an individual: the season in which a person is conceived and born, family size, birth order, whether the person was breast-fed as an infant, culture, socioeconomic status, and domicile. At present the primary concerns for nutritional factors in schizophrenia relate to intake of EPUFAs, particularly the omega-3 essential fatty acids (EFAs), and antioxidants, such as vitamins E and C.
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adler, L. A., Rotrosen, J., Edson, R.et al. (1999). Vitamin E treatment for tardive dyskinesia. Arch J Psychiatry 56: 836–841CrossRefGoogle ScholarPubMed
Akbar, M., Kim, H. Y. (2002). Protective effects of docosahexaenoic acid in staurosporine-induced apoptosis: involvement of phosphatidylinositol-3 kinase pathway. J Neurochem 82: 655–665CrossRefGoogle ScholarPubMed
Arnold, L. E., Kleykamp, D., Votolato, N., Gibson, R. A., Horrocks, L. (1994). Potential link between dietary intake of fatty acids and behavior: pilot exploration of serum lipids in attention-deficit hyperactivity disorder. J Child Adoles Psychopharmacol 4: 171–182CrossRefGoogle Scholar
Arvindakshan, M. (2003). The role of membrane essential fatty acids in schizophrenia outcome. Ph. D. Thesis, Pune University India
Arvindakshan, M., Sitasawad, S., Debsikdar, V.et al. (2003a). Membrane essential polyunsaturated fatty acids (EPUFA) and schizophrenia outcome: EPUFA and lipid peroxide levels in never-medicated and medicated schizophrenics. Biol Psychiatry 53: 56–64CrossRefGoogle Scholar
Arvindakshan, M., Ghate, M., Ranjekar, P. K., Evans, D. R., Mahadik, S. P. (2003b). Supplementation with a combination of omega-3 fatty acids and antioxidants (vitamins E and C) improves the outcome of schizophrenia. Schizophr Res 62: 195–204CrossRefGoogle Scholar
Axelrod, J. (1990). Receptor-mediated activation of phospholipase A2 and arachidonic acid release in signal transduction. Biochem Soc Trans 18: 503–507CrossRefGoogle ScholarPubMed
Berridge, M. J. (1981). Phosphatidylinositol hydrolysis: a multifunctional transducting mechanism. Mol Cell Endocrinol 24: 115–140CrossRefGoogle Scholar
Bloom, F. (1993). Advancing neurodevelopmental origin for schizophrenia. Arch Gen Psychiatry 50: 224–227CrossRefGoogle Scholar
Brand, A., Gil, S., Yavin, E. (2000). N-Methyl bases of ethanolamine prevent apoptotic cell death induced by oxidative stress in cells of oligodendroglia origin. J Neurochem 74: 1596–1604CrossRefGoogle ScholarPubMed
Brown, S., Birtwistle, J., Roe, L., Thompson, C. (1999). The unhealthy lifestyle of people with schizophrenia. Psychol Med 29: 697–701CrossRefGoogle ScholarPubMed
Burr, G. O., Burr, M. M. (1929). A new deficiency disease produced by the rigid exclusion of fat from the diet. J Biol Chem 82: 345–367Google Scholar
Carlson, S. E., Rhodes, P. G., Ferguson, M. G. (1986). Docosahexaenoic acid status of preterm infants at birth and following feeding with human milk or formula 1–3. Am J Clin Nutr 44: 798–804CrossRefGoogle ScholarPubMed
Chafetz, M. D. (1990). Nutrition and Neurotransmitters: The Nutrient Bases of Behavior. Englewood Cliffs, NJ: Prentice Hall
Christinsen, O., Christinsen, E. (1988). Fat consumption and schizophrenia. Acta Psychiatr Scand 78: 587–591CrossRefGoogle Scholar
Chua, S. E., McKenna, P. J. (1995). Schizophrenia: a brain disease? A critical review of structural and cerebral abnormalities in the disorder. Br J Psychiatry 166: 563–582CrossRefGoogle ScholarPubMed
Coleman, M., Gillberg, C. (1996). The Schizophrenias. A Biological Approach to the Schizophrenia Spectrum Disorders. New York: Springer
Craig, T. J., Siegel, C., Hopper, K., Lin, S., Sartorius, N. (1997). Outcome in schizophrenia and related disorders compared between developing and developed countries. Br J Psychiatry 170: 229–233CrossRefGoogle ScholarPubMed
Crawford, M. A. (1992). Essential fatty acids and neurodevelopmental disorder. In Neurobiology of Essential Fatty Acids, ed. N. G. Bazan. New York: Plenum Press, pp. 307–314CrossRef
Dhopeshwarkar, G. A. (1983). Nutrition and Brain Development. New York: Plenum Press
Eaton, W. W. (1985). Epidemiology of schizophrenia. Epidemiol Cal Rev 7: 105–126CrossRefGoogle ScholarPubMed
Edelson, E. (1988). Nutrition and the Brain. New York: Chelsea House
Edgerton, R. B., Cohen, A. (1994). Culture and schizophrenia: the DOSMD challenge. Br J Psychiatry 164: 222–231CrossRefGoogle ScholarPubMed
Essali, M. A., Das, R., Belleroche, J., Hirsch, S. R. (1990). The platelets polyphosphoinositide system in schizophrenia: the effects of neuroleptic treatment. Biol Psychiatry 28: 478–487CrossRefGoogle ScholarPubMed
Feinberg, I. (1990). Cortical pruning and the development of schizophrenia. Schizophr Bull 16: 567–568CrossRefGoogle ScholarPubMed
Fenton, W. S., Hibbeln, J., Knable, M. (2000). Essential fatty acids, lipid membrane abnormalities, and the diagnosis and treatment of schizophrenia. Biol Psychiatry 47: 8–21CrossRefGoogle ScholarPubMed
Forster, M. J., Dubey, A., Dawson, K. M.et al. (1996). Age-related losses of cognitive and motor skills in mice are associated with oxidative protein damage in the brain. Proc Natl Acad Sci, USA 93: 4765–4769CrossRefGoogle Scholar
Freud, S. (1961). Civilization and its discontents. In The Standard Edition of the Complete Psychological Work of Sigmund Freud, Vol. 21, ed. J. Strachey. New York: Norton, pp. 59–145
Fukuzako, H.Fukuzako, T., Takeuchi, K.et al. (1996). Phosphorus magnetic resonance spectroscopy in schizophrenia: correlation between membrane PL metabolism in the temporal lobe and positive symptoms. Progr Neuropsychopharmacol Biol Psychiatry 20: 629–640CrossRefGoogle Scholar
Glantz, L. A., Lewis, D. A. (2000). Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch Gen Psychiatry 57: 65–73CrossRefGoogle Scholar
Glen, A. I. M., Glen, E. M. T., Horrobin, D. F.et al. (1994). A red cell membrane abnormality in a subgroup of schizophrenic patients: evidence for two diseases. Schizophr Res 12: 53–61CrossRefGoogle Scholar
Heckers, S. (1997). Neuropathology of schizophrenia: cortex, thalamus, basal ganglia, and neurotransmitter-specific projection system. Schizophr Bull 23: 403–421CrossRefGoogle Scholar
Hegarty, J. D., Baldessarini, R. J., Tohen, M., Waternaux, C., Oepen, G. (1994). One hundred years of schizophrenia: a meta-analysis of the outcome literature. Am J Psychiatry 151: 1409–1416Google ScholarPubMed
Hoek, H. W., Brown, A. S., Susser, E. (1998). The Dutch famine and schizophrenia spectrum disorders. Soc Psychiatry Psychiatr Epidemiol 33: 373–379CrossRefGoogle ScholarPubMed
Horrobin, D. F. (1996). Schizophrenia as a membrane lipid disorder which is expressed throughout the body. Prostaglandins, Leukot Essent Fatty Acids 55: 3–8CrossRefGoogle ScholarPubMed
Horrobin, D. F. (1998). The membrane phospholipid hypothesis as a biochemical basis for the neurodevelopmental concept of schizophrenia. Schizophr Res 30: 193–208CrossRefGoogle ScholarPubMed
Horrobin, D. F. (1999). The effects of antipsychotic drugs on membrane phospholipids: a possible novel mechanism of action of clozapine. In Phospholipid Spectrum Disorders in Psychiatric, ed. M. Peet, A. L. Glen, D. Horrobin. Carnforth, UK: Marius Press, pp. 113–117
Horrobin, D. F., Glen, A. I. M., Vaddadi, K. S. (1994). The membrane hypothesis of schizophrenia. Schizophr Res 13: 195–208CrossRefGoogle ScholarPubMed
Horrocks, L. A., Ansell, G. B., Porcellati, G. (ed.) (1982). Phospholipids in the Nervous System, Vol. 1, Metabolism. New York: Raven Press
Hudson, C. J., Young, L. T., Li, P. P., Warsh, J. J. (1993). CNS signal transduction in the pathophysiology and pharmacology of affective disorders and schizophrenia. Synapse 13: 278–293CrossRefGoogle Scholar
Hulshoff Pol, H. E., Hoek, H. W., Susser, E.et al. (2000). Prenatal exposure to famine and brain morphology in schizophrenia. Am J Psychiatry 157: 1170–1172CrossRefGoogle Scholar
Innis, S. M. (1991). Essential fatty acids in growth and development. Progr Lipid Res 30: 39–103CrossRefGoogle ScholarPubMed
Jablensky, A., Sartorius, N., Ernberg, G., et al. (1991). Schizophrenia: manifestations, incidence and course in different cultures. Psychol Med Monogr Suppl 20: 1–97CrossRefGoogle Scholar
Jeding, I., Evans, P. J., Akanmu, D.et al. (1995). Characterization of the potential antioxidant and pro-oxidant actions of some neuroleptic drugs. Biochem Pharmacol 49: 359–365CrossRefGoogle ScholarPubMed
Kaiya, H., Nishida, A., Imai, A., Nakashima, S., Nozawa, Y. (1989). Accumulation of diacylglycerol in platelet phosphoinositides turnover in schizophrenia: a biological marker of good prognosis?Biol Psychiatry 26: 669–676CrossRefGoogle ScholarPubMed
Karno, M., Jenkins, J. H. (1993). Cross-cultural issues in the course and treatment of schizophrenia. Psych Clin North Am 16: 339–350Google ScholarPubMed
Keshavan, M. S., Murray, R. M. (1997). Neurodevelopment and Adult Psychopathology. Cambridge, UK: Cambridge University Press
Keshavan, M. S., Mallinger, A. G., Pettegrew, J. W., Dippold, C. (1993). Erythrocyte membrane phospholipids in psychotic patients. Psychiatr Res 49: 9–95CrossRefGoogle ScholarPubMed
Keshavan, M. S., Anderson, S., Pettegrew, J. W. (1994). Is schizophrenia due to excessive synaptic pruning in the prefrontal cortex? The Feinberg hypothesis revisited. J Psychiatr Res 28: 239–265CrossRefGoogle ScholarPubMed
Keshavan, M. S., Sujata, A., Mehra, M., Montrose, D. M., Sweeney, J. A. (2003a). Psychosis proneness and ADHD in young relatives of schizophrenia patients. Schizophr Res 59: 85–92CrossRefGoogle Scholar
Keshavan, M. S., Stanley, J. A., Montrose, D. M., Minshew, N. J., Pettegrew, J. W. (2003b). Prefrontal membrane phospholipid metabolism of child and adolescent offspring at risk for schizophrenia or schizoaffective disorder: an in vivo 31P MRS study. Mol Psychiatry 8: 316–323CrossRefGoogle Scholar
Khan, A., Khan, S. R., Leventhal, R. M., Brown, W. A. (2001). Symptom reduction and suicide risk among patients treated with placebo in antipsychotic clinical trials: an analysis of the Food and Drug Administration database. Am J Psychiatry 158: 1449–1454CrossRefGoogle ScholarPubMed
Khan, M. M., Evans, D. R., Gunna, V.et al. (2002). Reduced erythrocyte membrane essential fatty acids increased lipid peroxides in schizophrenia at the never-medicated first-episode of psychosis and after years of treatment with antipsychotics. Schizophr Res 58: 1–10CrossRefGoogle ScholarPubMed
Kulhara, P., Chakrabarti, S. (2001). Culture and schizophrenia and other psychotic disorders. Psychiatr Clin North Am 24: 449–464CrossRefGoogle ScholarPubMed
Lawrie, S. M., Abukmeil, S. S. (1998). Brain abnormality in schizophrenia: a systematic and quantitative review of volumetric magnetic resonance imaging studies. Br J Psychiatry 172: 119–120CrossRefGoogle ScholarPubMed
Mahadik, S. P., Evans, D. (1997). Essential fatty acids in the treatment of schizophrenia. Drugs Today 33: 5–17Google Scholar
Mahadik, S. P., Gowda, S. (1996). Antioxidants in the treatment of schizophrenia. Drugs Today 32: 1–13Google Scholar
Mahadik, S. P., Mukherjee, S. (1996). Free radical pathology and the antioxidant defense in schizophrenia. Schizophr Res 19: 1–18CrossRefGoogle Scholar
Mahadik, S. P., Scheffer, R. E. (1996). Oxidative injury and potential use of antioxidants in schizophrenia. Prostaglandins, Leukot EssentFatty Acids 55: 45–54CrossRefGoogle Scholar
Mahadik, S. P., Mukherjee, S., Correnti, E.et al. (1994). Distribution of plasma membrane phospholipids and cholesterol in skin fibroblasts from drug-naive patients at the onset of psychosis. Schizophr Res 13: 239–247CrossRefGoogle Scholar
Mahadik, S. P., Mukherjee, S., Horrobin, D.et al. (1996a). Plasma membrane phospholipid fatty acid composition of cultured skin fibroblasts from schizophrenic patients: comparison with bipolar and normal controls. Psychiatr Res 63: 133–142CrossRefGoogle Scholar
Mahadik, S. P., Shendarkar, N. S., Scheffer, R., Mukherjee, S., Correnti, E. E. (1996b). Utilization of precursor essential fatty acids in culture by skin fibroblasts from schizophrenic patients and normal controls. Prostaglandins, Leukot Essent Fatty Acids 55: 65–70CrossRefGoogle Scholar
Mahadik, S. P., Mulchandani, M., Hegde, M. V., Ranjekar, P. K. (1999a). Cultural and socioeconomic differences in dietary intake of essential fatty acids and antioxidants-effects on the outcome. In Phospholipid Spectrum Disorders in Psychiatric, ed. D., Horrobin, A. L. Glen, M. Peet. Carnforth, UK: Marius Press, pp. 167–179
Mahadik, S. P., Sitasawad, V., Mulchandani, M. (1999b). Membrane peroxidation and the neuropathology of schizophrenia. In Phospholipid Spectrum Disorders in Psychiatric, ed. D. Horrobin, A. L. Glen, M. Peet. Carnforth, UK: Marius Press, pp. 99–111
Mahadik, S. P., Evans, D., Lal, H. (2001). Oxidative stress and the role of antioxidant and ω-3 essential fatty acid supplementation in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 25: 463–493CrossRefGoogle Scholar
Margolis, R. L., Chung, D.-M., Post, R. M. (1994). Programmed cell death: Implications for neuropsychiatric disorders. Biol Psychiatry 35: 946–956CrossRefGoogle ScholarPubMed
McCreadie, R. G. (1997). The Nithsdale Schizophrenia Surveys 16: breast-feeding and schizophrenia: preliminary results and hypothesis. Br J Psychiatry 170: 334–337CrossRefGoogle Scholar
McGrath, J. (1999). Hypothesis: is low vitamin D a risk-modifying factor for schizophrenia?Schizophr Res 40: 173–177CrossRefGoogle Scholar
McIntyre, R. S., McCann, S. M., Kennedy, S. H. (2001). Antipsychotic metabolic effects: weight gain, diabetes mellitus and lipid abnormalities. Can J Psychiatr 46: 272–281CrossRefGoogle ScholarPubMed
Mednick, S. A., Machon, R. A., Huttunen, M. O., Bonett, D. (1988). Adult schizophrenia following prenatal exposure to an influenza epidemic. Arch Gen Psychiatry 45: 189–192CrossRefGoogle Scholar
Murphy, H. B. M. (1984). Editorial: diseases of civilization?Psychol Med 14: 487–490CrossRefGoogle Scholar
Murray, R. M. (1994). Neurodevelopmental schizophrenia: the rediscovery of dementia precox. Br J Psychiatry 165(Suppl. 25): 6–12Google Scholar
Nandi, D. N., Mukherjee, S. P., Boral, G. C.et al. (1980). Socioeconomic status and mental morbidity in certain tribes and castes in India: a cross-cultural study. Br J Psychiatry 136: 73–85CrossRefGoogle ScholarPubMed
Neuringer, M.Connor, W. E., Lin, D. S., Barstad, L., Luck, S. (1986). Biochemical and functional effect of prenatal and postnatal omega-3 fatty acid deficiency on retina and brain in rhesus monkeys. Proc Natl Acad Sci USA 83: 4021–4025CrossRefGoogle ScholarPubMed
Ntambi, J. M., Bene, H. (2001). Polyunsaturated fatty acid regulation of gene expression. J Mol Neurosci 16: 273–278CrossRefGoogle ScholarPubMed
O'Brien, J. S., Sampson, E. L. (1965). Lipid composition of the normal human brain: gray matter, white matter, and myelin. J Lipid Res 6: 537–544Google ScholarPubMed
Parikh, V.Khan, M. M., Mahadik, S. P. (2002). Differential effects of antipsychotics on expression of antioxidant enzymes and membrane lipid peroxidation in rat brain. J Psychiatr Res 37: 43–51CrossRefGoogle Scholar
Peet, M., Laugharne, J., Rangarajan, N., Renolds, G. P. (1993). Tardive dyskinesia, lipid peroxidation, and sustained amelioration with vitamin E treatment. Int Clin Psychopharmacol 8: 151–153CrossRefGoogle ScholarPubMed
Peet, M., Laugharne, J., Mellor, J. E., Ramchand, C. N. (1995). Essential fatty acid deficiency in erythrocyte membranes from chronic schizophrenic patients, and the clinical effects of dietary supplementation. Prostaglandins, Leukotr Essent Fatty Acids 55: 119–122Google Scholar
Peet, M., Brind, J., Ramchand, C. N., Shah, S., Vankar, G. K. (2001). Two double-blind placebo-controlled pilot studies of eicosapentaenoic acid in the treatment of schizophrenia. Schizophr Res 49: 243–251CrossRefGoogle ScholarPubMed
Peet, M., Horrobin, D. F., in association with the E-E Multicenter Study Group (2002). A dose-ranging exploratory study of the effects of ethyl-eicosapentaenoate in patients with persistent schizophrenic symptoms. J Psychiatric Res 36: 7–18CrossRefGoogle ScholarPubMed
Pettegrew, J. W., Keshavan, M. S., Minshew, N. J. (1991). Alterations in brain high-energy phosphate and membrane phospholipid metabolism in first-episode, drug-naive schizophrenics. A pilot study of the dorsal prefrontal cortex using in vivo phosphorus 31 nuclear magnetic resonance spectroscopy. Arch Gen Psychiatry 48: 563–568CrossRefGoogle ScholarPubMed
Piomelli, D., Pilon, C., Giros, B.et al. (1991). Dopamine activation of the arachidonic acid cascade as a basis for D1/D2 receptor synergism. Nature 353: 164–167CrossRefGoogle ScholarPubMed
Raedler, T. J., Knable, M. B., Weinberger, D. R. (1998). Schizophrenia as a developmental disorder of the cerebral cortex. Curr Opin Neurobiol 8: 157–161CrossRefGoogle ScholarPubMed
Rafalowska, U., Liu, G.-J., Floyd, R. A. (1989). Peroxidation induced changes in synaptosomal transport of dopamine and gamma-aminobutyric acid. Free Rad Biol Med 6: 485–492CrossRefGoogle ScholarPubMed
Rana, R. S., Hokin, L. E. (1990). Role of phosphoinositols in transmembrane signaling. Physiol Rev 70: 115–164CrossRefGoogle Scholar
Reddy, R., Yao, J. (1996). Free radical pathology in schizophrenia: a review. Prostaglandins, Leukot Essent Fatty Acids 55: 33–43CrossRefGoogle ScholarPubMed
Rotrosen, J., Wolkin, A. (1987). Phospholipid and prostaglandin hypotheses of schizophrenia. In Psychopharmacology: The Third Generation of Progress, ed. H. Y. Meltzer. New York. Raven Press, pp. 759–764
Sartorius, N., Jablensky, A., Korten, A.et al. (1986). Early manifestations and first-contact incidence of schizophrenia in different cultures. Psychol Med 16: 909–928CrossRefGoogle ScholarPubMed
Scottish Schizophrenia Research Group (2000). Smoking habits and plasma lipid peroxides and vitamin E in never medicated first-episode schizophrenic patients with schizophrenia. Br J Psychiatry 176: 290–293CrossRef
Selemon, L. D., Rajkowska, G., Goldman-Rakic, P. S. (1995). Abnormally high neuronal density in the schizophrenic cortex. Arch Gen Psychiatry 52: 805–818CrossRefGoogle ScholarPubMed
Simopoulos, A. P. (1991). Omega-3 fatty acids in health and disease, and in growth and development. Am J Clin Nutr 54: 438–463CrossRefGoogle ScholarPubMed
Sohal, R. S., Ku, H.-H., Agarwal, S., Forster, M. J., Lal, H. (1994). Oxidative damage, mitochondrial oxidant generation and antioxidant defenses during aging, and in response to food restriction in the mouse. Mech Aging Dev 74: 121–133CrossRefGoogle ScholarPubMed
Stanley, J. A., Williamson, P. C., Drost, D. J.et al. (1995). An in vivo study of the prefrontal cortex of schizophrenic patients at different age of illness via phosphorous magnetic resonance spectroscopy. Arch Gen Psychiatry 52: 399–406CrossRefGoogle Scholar
Stevens, L. J., Burgess, J. R. (1999). Essential fatty acids in children with attention-deficit/hyperactivity disorder. In Phospholipid Spectrum Psychiatric Disorders, ed. D. Horrobin, A. L. Glen, M. Peet. Carnforth, UK: Marius Press, pp. 263–269
Suzuki, K. (1981). Chemistry and metabolism of brain lipids. In Basic Neurochemistry, 3rd edn, ed. D. J. Seigel, R. W. Albers, B. W. Agranoff, et al. Boston, MA: Little Brown, pp. 355–370
Tollefson, G. D. (1996). Cognitive function in schizophrenic patients. J Clin Psychiatry 57(Suppl. 11): 31–39Google ScholarPubMed
Thompson, G. A. (1992). The Regulation of Membrane Lipid Metabolism, 2nd edn. Boca Raton, FL: CRC Press
Torrey, E. F. (1980). Schizophrenia and Civilization. New York: Jason Aronson
Vaddadi, K. S., Courtney, P., Gilleard, C. S., Manku, M. S., Horrobin, D. F. (1989). A double-blind trial of essential fatty acid supplementation in patients with tardive dyskinesia. Psychiatr Res 27: 313–323CrossRefGoogle ScholarPubMed
Virdee, K., Brown, B. L., Dobson, P. R.-M. (1994). Stimulation of arachidonic acid release from Swiss 3T3 cells by recombinant basic fibroblast growth factor: independence from phosphoinositide turnover. Biochim BiophysActa 16: 193–205Google Scholar
Wainwright, P. E. (1992). Do essential fatty acids play a role in brain and behavioral development?Neurosci Biobehav Rev 16: 193–205CrossRefGoogle ScholarPubMed
Weinberger, D. R. (1996). On the plausibility of “the neurodevelopmental hypothesis” of schizophrenia. Neuropsychopharmacology 14: 1S–11SCrossRefGoogle ScholarPubMed
WHO (World Health Organization) (1973). The International Pilot Study of Schizophrenia, Vol. 1. Geneva: World Health Organization
Yamamoto, N., Saitoh, M., Moriuchi, A., Nomura, M., Okuyama, H. (1987). Effect of dietary γ-linolenate/linoleate balance on brain lipid compositions and learning ability of rats. J Lipid Res 28: 144–151Google Scholar
Yao, J. K. (1999). Red blood cell and platelet fatty acid metabolism in schizophrenia. In Phospholipid Spectrum in Psychiatric Disorders, ed. D. Horrobin, A. L. Glen, M. Peet. Carnforth, UK: Marius Press, pp. 57–71
Yao, J. K., Yasaei, P., Kammen, D. P. (1992). Increased turnover of platelet phosphatidylinositol in schizophrenia. Prostaglandins, Leukotr Essent Fatty Acids 46: 39–46CrossRefGoogle Scholar
Yao, J. K., Kammen, D. P., Welker, J. A. (1994). Red cell membrane dynamics in schizophrenia: II fatty acid composition. Schizophr Res 13: 217–226CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×