Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-13T03:10:24.017Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  13 July 2023

Richard B. Tenser
Affiliation:
Professor Emeritus of Pennsylvania State University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Neurovirology
Measuring, Interpreting, and Understanding Viruses
, pp. 206 - 212
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bamford, DH, Burnett, RM, Stuart, DI. Evolution of viral structure. Theor Popul Biol 2002;61:461470. https://doi.org/10.1006/tpbi.2002.1591CrossRefGoogle ScholarPubMed
Gigante, A, Li, M, Junghänel, S, et al. Non-viral transfection vectors: are hybrid materials the way forward? Med Chem Commun 2019;10:16921718. https://doi.org/10.1039/C9MD00275HCrossRefGoogle ScholarPubMed
Ornatsky, O, Baranov, VI, Bandura, DR, et al. Multiple cellular antigen detection by ICP-MS. J Immun Meth 2006;308:6876. https://doi.org/10.1016/j.jim.2005.09.020CrossRefGoogle ScholarPubMed
Hepp, C, Shiaelis, N, Robb, NC, et al. Viral detection and identification in 20 min by rapid single-particle fluorescence in-situ hybridization of viral RNA. Sci Rep 2021;11:19579. https://doi.org/10.1038/s41598-021-98972-zCrossRefGoogle Scholar
Abbasi, J. The flawed science of antibody testing for SARS-CoV-2 immunity. JAMA 2021;326:17811782. https://doi.org/10.1001/jama.2021.18919CrossRefGoogle ScholarPubMed
Cox, NJ, Subbaraok, K. Global epidemiology of influenza: past and present. Ann Rev Med 2000;51:407421. https://doi.org/10.1146/annurev.med.51.1.407CrossRefGoogle ScholarPubMed
Ahmed, A, Oldstone, MBA. Organ-specific selection of viral variants during chronic infection. J Exp Med 1988;167:17191724. https://doi.org/10.1084/jem.167.5.1719CrossRefGoogle ScholarPubMed
Harvey, WT, Carabelli, AM, Jackson, B, et al. SARS-Co-V-2 variants, spike mutations and immune escape. Nature Rev Microbiol 2021;19:409424. https://doi.org/10.1038/s41579-021-00573-0CrossRefGoogle Scholar
Vogel, G, Kupferschmidt, K. Early studies shed light on omicron’s behavior. Science 2021;374:15431544. https://doi.org/10.1126/science.acz9878CrossRefGoogle ScholarPubMed
Katzelnick, LC, Escoto, AC, Huang, AT, et al. Antigenic evolution of dengue viruses over 20 years. Science 2021;374:9991004. https://doi.org/10.1126/science.abk0058CrossRefGoogle ScholarPubMed
Hendrix, RW, Lawrence, JG, Hatfull, GF, Casjens, S. The origins and ongoing evolution of viruses. Trends Microbiol 2000;8(11):504509. https://doi.org/10.1016/S0966-842x(00)01863-1CrossRefGoogle ScholarPubMed
Wimmer, E. The test-tube synthesis of a chemical called poliovirus. EMBO Rep 2006;7:S3S9. https://doi.org/10.1038/sj.embor.7400728CrossRefGoogle ScholarPubMed
Ramirez, S, Fernandez-Antunez, C, Galli, A., et al. Overcoming culture restriction for SARS-CoV-2 in human cells facilitates the screening of compounds inhibiting viral replication. Antimicrob Agents Chemother 2021;65:120. https://doi.org/10.1128/AAC.00097-21CrossRefGoogle ScholarPubMed
Worobey, M. Dissecting the early COVID-19 cases in Wuhan. Science 2021;374:12021204. https://doi.org/1126/science.abm4454CrossRefGoogle ScholarPubMed
Lipsitch, M, Swerdlow, DL, Firelli, L. Defining the epidemiology of COVID-19 – studies needed. N Engl J Med 2020;382:11941196. https://doi.org/10.1056/NEJMp2002125CrossRefGoogle ScholarPubMed
Amrita, J, Canaday, DH. Herpes zoster in the older adult. Infect Dis Clin North Am 2017;31:811826. https://doi.org/10.1016/j.idc.2017.07.016Google Scholar
Aw, D, Silva, AB, Palmer, DB. Immunosenescence: emerging challenges for an ageing population. Immunology 2007;120:435446. https://doi.org/10.1111/j.1365-2567.2007.02555.xCrossRefGoogle ScholarPubMed
Colloca, L, Barsky, AJ. Placebo and nocebo effects. N Engl J Med 2020;382:554561. https://doi.org/10.1056/NEJMra1907805CrossRefGoogle ScholarPubMed
Principi, N, Silvestri, E, Esposito, S. Advantages and limitations of bacteriophages for the treatment of bacterial infections. Front Pharmacol 2019;10:513. https://doi.org/10.3389/fphar.2019.00513CrossRefGoogle Scholar
Mentha, N, Clément, S, Negro, F, Alfaiate, D. A review on hepatitis D; from virology to new therapies. J Adv Res 2019;17:315. https://doi.org/10.1016/j.jare.2019.03.009CrossRefGoogle ScholarPubMed
Terry, C, Wadsworth, JDF. Recent advances in understanding mammalian prion structure: a mini review. Front Mol Neurosci 2019;12:169. https://doi.org/10.3389/fnmol.2019.00169CrossRefGoogle ScholarPubMed
McCormick, W, Mermel, LA. The basic reproductive number and particle-to-plaque ratio: comparison of these two parameters and viral infectivity. Virol J 2021;18(1):92. https://doi.org/10.1186/s12985-021-01566-4CrossRefGoogle ScholarPubMed
Malone, B, Urakova, N, Snijder, EJ, et al. Structures and functions of coronavirus replication-transcription complexes and their relevance for SARS-CoV-2 drug design. Nat Rev Mol Cell Biol 2022;23:2139. https://doi.org/10.1038/s41580-021-00432-zCrossRefGoogle ScholarPubMed
Bonilla, SL, Sherlock, ME, MacFadden, A, Kleft, JS. A viral RNA hijacks host machinery using dynamic conformational changes of a tRNA-like structure. Science 2021;374:955960. https://doi.org/10.1126/science.abe8526CrossRefGoogle ScholarPubMed
Ahlquist, P, Noueiry, AO, Lee, W-M, et al. Host factors in positive-strand RNA virus genome replication. J Virol 2003;77:81818186. https://doi.org/10.1128/JVI.77.15.8181-8186.2003Google Scholar
Piel, FB, Steinberg, MH, Rees, DC. Sickle cell disease. N Engl J Med 2017;376:15611573. https://doi.org/10.1056/NEJMra1510865CrossRefGoogle ScholarPubMed
Cavalli, G, Heard, E. Advances in epigenetics link genetics to the environment and disease. Nature 2019;571:489499. https://doi.org/10.1038/s41586-019-1411-0Google Scholar
Galmarini, CM, Mackey, JR, Dumontet, C. Nucleoside analogues and nucleobases in cancer treatment. Lancet Oncol 2002;3:415424. https://doi.org/10.1016/S1470-2045(02)00788-XCrossRefGoogle ScholarPubMed
Seley-Radke, KL, Yates, MK. The evolution of nucleoside antivirals: a review for chemists and non-chemists. Antiviral Res 2018;154:6686. https://doi.org/10.1016/j.antiviral.2018.04.004CrossRefGoogle Scholar
Varga, ZV, Ferdinandy, P, Liaudet, L, Pacher, P. Drug-induced mitochondrial dysfunction and cardiotoxicity. Am J Physiol Heart Circ Physiol 2015;309:H1453H1467. https://doi.org/10.1152/ajpheart.00554.2015.CrossRefGoogle ScholarPubMed
Roger, AJ, Nunoz-Gomez, SA, Kamikawa, R. The origin and diversification of mitochondria. Current Biol. 2017;27:R1177R1192. https://doi.org/10.1016/j.cub.2017.09.015CrossRefGoogle ScholarPubMed
Medzhitov, R. The spectrum of inflammatory responses. Science 2021;374:10701075. https://doi.org/10.1126/science.abi5200Google Scholar
Casanova J-L, , Abel, L. Mechanisms of viral inflammation and disease in humans. Science 2021;374:10801086. https://doi.org/10.1126/science.abj7965CrossRefGoogle ScholarPubMed
The COVID STEROID 2 Trial Group. Effect of 12 mg vs 6 mg of dexamethasone on the number of days alive without life support in adults with COVID-19 and severe hypoxemia. JAMA 2021;326:18071817. https://doi.org/10.1001/jama.2021.18295CrossRefGoogle Scholar
Balasko, A, Graydon, C, Fowke, KR. Novel in vitro invariant natural killer T cell functional assay. J Immunol Meth 2021;499:113171. https://org/10.1016/jim.2021.113171CrossRefGoogle Scholar
Janiaud, P, Axfors, C, Schmitt, AM, et al. Association of convalescent plasma treatment with clinical outcomes in patients with COVID-19. JAMA 2021;325:11851195. https://doi.org/10.1001/jama.2021.2747CrossRefGoogle ScholarPubMed
O’Brien, MP, Forleo-Neto, E, Sarkar, N, et al. Effect of subcutaneous casirivimab and imdevimab antibody combination vs placebo on development of symptomatic COVID-19 in early asymptomatic SARS-CoV-2 infection. JAMA 2022;327:432441. https://doi.org/10.1001/jama.2021.24939CrossRefGoogle ScholarPubMed
Cohn, BA, Cirillo, PM, Murphy, CC, et al. SARS-CoV-2 vaccine protection and deaths among US veterans during 2021. Science 2022;375:331336. https://doi.org/10.1126/science.abm0620Google Scholar
Marks, PW, Gruppuso, PA, Adashi, EY. Urgent need for next-generation COVID-19 vaccines. JAMA 2023;329:1920. https://doi.org/10.1001/jama.2022.22759CrossRefGoogle ScholarPubMed
Goel, RR, Painter, MM, Apostolidis, SA, et al. mRNA vaccines induce durable memory to SARS-CoV-2 variants of concern. Science 2021;374(6572):abm0829. https://doi.org/10.1126/science.abm0829Google Scholar
Gonzalez, DC, Nassau, DE, Khodamoradi, K, et al. Sperm parameters before and after COVID-19 mRNA vaccination. JAMA 2021;326:273274. https://doi.org/10.1001/jama.2021.9976CrossRefGoogle ScholarPubMed
Blumenthal, KG, Robinson, LB, Camargo, CA Jr, et al. Acute allergic reactions to mRNA COVID-19 vaccines. JAMA 2021;325:15621565. https://doi.org/10.1001/jama.2021.3976CrossRefGoogle ScholarPubMed
Shimabukuro, TT, Cole, M, Su, JR. Reports of anaphylaxis after receipt of mRNA COVID-19 vaccines in the US – December 14, 2020 – January 18, 2021. JAMA 2021;325:11011102. https://doi.org/10.1001/jama.2021.1967CrossRefGoogle Scholar
Oster, ME, Shay, DK, Su, JR, et al. Myocarditis cases reported after mRNA-based COVID-19 vaccination in the US from December 2020 to August 2021. JAMA 2022;327:331340. https://doi.org/10.1001/jama.2021.24110CrossRefGoogle ScholarPubMed
van Kammen, MS, de Sousa, DA, Poli, S, Cordonnier, C, et al. Characteristics and outcomes of patients with cerebral venous sinus thrombosis in SARS-CoV-2 vaccine-induced immune thrombotic thrombocytopenia. JAMA Neurology 2021;78:13141323. https://doi.org/10.1001/jamaneurol.2021.3619CrossRefGoogle Scholar
Cohen, JI. Herpesvirus latency. J Clin Invest 2020;130:33613369. https://doi.org/10.1172/JCI136225Google Scholar
Feldstein, LR, Tenforde, MW, Friedman, KG, et al. Characteristics and outcomes of US children and adolescents with multisystem inflammatory syndrome in children (NIS-C) compared with severe acute COVID-19. JAMA 2021;325:10741097. https://doi.org/doi:10.1001/jama.2021.2091Google Scholar
Spudich, S, Nath, A. Nervous system consequences of COVID-19. Science 2022;375:267269. https://doi.org/10.1126/science.abm2052Google Scholar
Singer, EJ, Sueiras, MV, Commins, D, Levine, A. Neurologic presentations of AIDS. Neurol Clin. 2010;28:253275. https://doi.org/10.1016/j.ncl.2009.09.018CrossRefGoogle ScholarPubMed
Julg, B, Dee, L, Ananworanich, J, et al. Recommendations for analytical antiretroviral treatment in HIV research trials-report of a consensus meeting. Lancet HIV. 2019;6:e259e268. https://doi.org/10.1016/S2352-3018(19)30052-9CrossRefGoogle ScholarPubMed
Fugl, A, Andersen, CL. Epstein-Barr virus and its association with disease: a review of relevance to general practice. BMC Fam Pract 2019;20(1):62. https://doi.org/10.1186/s12875-019-0954-3CrossRefGoogle ScholarPubMed
Antinone, SE, Smith, GA. Retrograde axon transport of herpes simplex virus and pseudorabies virus: a live cell comparative analysis. J Virol 2010;84:15041512. https://doi.org/10.1128/JVI.02029-09CrossRefGoogle ScholarPubMed
Dugal-Tessier, J, Thirumalairajan, S, Jain, N. Antibody-oligonucleotide conjugates: a twist to antibody-drug conjugates. J Clin Med 2021;10(4):838. https://doi.org/10.3390/jcm10040838Google Scholar
Chaudhuri, A, Kennedy, PGE. Diagnosis and treatment of viral encephalitis. Postgrad Med J 2002;78:575583. http://dx.doi.org/10.1136/pmj.78.924.575Google Scholar
Chadwick, DR. Viral meningitis. Brit Med Bull 2005;7576:114. https://doi.org/10.1093/bmb/ldh057CrossRefGoogle ScholarPubMed
Price, HE, Hogrefe, WR. Detection of West Nile virus (WNV)-specific immunoglobulin M in a reference laboratory setting during the 2000 WNV season in the United States. Clin Diag Lab Immunol 2003;10:764768. https://doi.org/10.1128/CDLI.10.5.764–768.2003Google Scholar
Tyler, KL. Acute viral encephalitis. N Engl J Med 2018;379:557566. https://doi.org/10.1056/NEJMra1708714CrossRefGoogle ScholarPubMed
Bridgens, R, Sturman, S, Davidson, C. Post polio syndrome – polio’s legacy. Clin Med 2010;10:213214. https://doi.org/10.7861/clinmedicine.10-3-213Google Scholar
Griffin, DE. Measles virus persistence and its pathogenesis. Curr Opin Virol 2020;41:4651. https://doi.org/10.1016/j.coviro.2020.03.003CrossRefGoogle Scholar
Fitzgerald, B, Boyle, C, Honein, MA. Birth defects potentially related to zika virus infection during pregnancy in the United States. JAMA 2018;319:11951196. https://doi.org/10.1001/jama.2018.0126CrossRefGoogle ScholarPubMed
Racicot, K, Mor, G. Risks associated with viral infections during pregnancy. J Clin Invest 2017;127:15911599. https://doi.org/10.1172/JCI87490Google Scholar
Stocking, C, Kozak, CA. Murine endogenous retroviruses. Cell Mol Life Sci 2008;65:33833398. https://doi.org/10.1007/s00018-008-8497-0Google Scholar
Lasky, T, Terracciano, GJ, Magder, L, et al. The Guillain-Barre syndrome and the 1992–1993 and 1993–1994 influenza vaccines. N Engl J Med 1998;339:17971802. https://doi.org/10.1056/NEJM199812173392501Google Scholar
Ben David, SS, Potasman, I, Rahamim-Cohen, D. Rate of recurrent Guillain-Barré syndrome after mRNA COVID-19 vaccine BNT162b2. JAMA Neurol 2021;78:14091411. https://doi.org/10.1001/jamaneurol.2021.3287CrossRefGoogle Scholar
Deisenhammer, F, Zetterberg, H, Fitzner, B, Zettl, UK. The cerebrospinal fluid in multiple sclerosis. Front Immunol 2019;10:726. https://doi.org/10.3389/fimmu.2019.00726CrossRefGoogle ScholarPubMed
Tenser, RB, Sommerville, KW, Mummaw, JG, Frisque, RJ. Isolation of JC virus capsomer-like structures from progressive multifocal leukoencephalopathy brain. J Neurol Sci 1986;72:243254. https://doi.org/10.1016/0022-510X(86)90012-2Google Scholar
Cortese, I, Reich, DS, Nath, A. Progressive multifocal leukoencephalopathy and the spectrum of JC virus-related disease. Nat Rev Neurol 2020;17:3751. https://doi.org/10.1038/s41582-020-00427-yGoogle Scholar
White, MK, Khalil, L. Pathogenesis of progressive multifocal leukoencephalopathy-revisited. J Infect Dis 2011;203:578586. https://doi.org/10.1093/infdis/jiq097Google Scholar
Leray, E, Moreau, T, Fromont, A, Edan, G. Epidemiology of multiple sclerosis. Rev Neurol (Paris) 2016;172:313. https://doi.org/10.1016/j.neurol.2015.10.006CrossRefGoogle ScholarPubMed
Bjornevik, K, Cortese, M, Healy, BC, et al. Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. Science 2022;375:296301. https://doi.org/10.1126/science.abj8222Google Scholar
Maitland, MT, Frederiksen, JL. Vaccines and multiple sclerosis: a systemic review. J Neurol 2017;264:10351050. https://doi.org/10.1007/s00415-016-8263-4CrossRefGoogle Scholar
Sormani, MP, Tintorè, M, Rovaris, M, et al. Will Rogers phenomenon in multiple sclerosis. Ann Neurol 2008;64:428433. https://doi.org/10.1002/ana.21464CrossRefGoogle Scholar
McGuire, LI, Peden, AH, Orrú, CD, et al. RT-QuIC analysis of cerebrospinal fluid in sporadic Creutzfeldt-Jakob disease. Ann Neurol 2012;72:278285. https://doi.org/10.1002/ana.23589Google Scholar
Eccleston, PA, Funa, K, Heldin, C-H. Neurons of the peripheral nervous system express thymidine phosphorylase. Neurosci Lett 1995;192:137141. https://doi.org/10.1016/0304-3940(95)11622-4Google Scholar
Bitter, EE, Townsend, MH, Erickson, R, et al. Thymidine kinase through the ages: a comprehensive review. Cell Biosci 2020;10(1):138. https://doi.org/10.1186/s13578-020-00493-1CrossRefGoogle ScholarPubMed
Westheim, AI, Tenser, RB, Marks, JG Jr. Acyclovir resistance in a patient with chronic mucocutaneous herpes simplex infection. J Am Acad Derm 1987;17:875880. https://doi.org/10.1016/S0190-9622(87)70272-2CrossRefGoogle Scholar
Chen, S-H, Pearson, A, Coen, DM, Chen, S-H. Failure of thymidine kinase-negative herpes simplex virus to reactivate from latency following efficient establishment. J Virol 2004;78:520523. https://doi.org/10.1128/JVI.78.1.520-523.2004Google Scholar
Tenser, RB, Gaydos, A, Hay, KA. Reactivation of thymidine kinase-negative herpes simplex virus is enhanced by nucleoside. J Virol 1996;70:12711276. DOI:https://doi.org/10.1128/jvi.70.2.1271-1276.1996Google Scholar
Tenser, RB, Gaydos, A, Hay, KA. Inhibition of herpes simplex virus latency by dipyridamole. Antimicrob Agents Chemother 2001;45:36573659. https://doi.org/10.1128/AAC.45.12.3657-3659.2001CrossRefGoogle ScholarPubMed
Owen, DR, Allerton, CMN, Anderson, AS, et al. An oral SARS-CoV-2 Mpro inhibitor clinical candidate for the treatment of COVID-19. Science. 2021;374:15861593. https://doi.org/10.1126/science.abl4784CrossRefGoogle ScholarPubMed
Sourimant, J, Lieber, CM, Aggarwal, M, et al. 4’-fluorouridine is an oral antiviral that blocks respiratory syncytial virus and SARS-CoV-2 replication. Science 2022;375:161167. https://doi.org/10.1126/science.abj5508CrossRefGoogle ScholarPubMed
Richardson, PJ, Ottaviani, S, Prelle, A, Stebbing, J, Casalini, G. CNS penetration of potential anti-COVID-19 drugs. J Neurol 2020;267:18801882. https://doi.org/10.1007/s00415-020-09866-5Google Scholar
Hammond, SM, Aartsma-Rus, A, Alves, S, et al. Delivery of oligonucleotide-based therapeutics: challenges and opportunities. EMBO Mol Med 2021;13(4):e13243. https://doi.org/10.15252.emmm.202013243Google Scholar
Reus, B, Caserta, S, Larsen, M, et al. In-depth profiling of T-cell responsiveness to commonly recognized CMV antigens in older people reveals important sex differences. Front Immunol 2021;12:707830. https://doi.org/10.3389/fimmu.2021.707830CrossRefGoogle ScholarPubMed
Zollner, A, Watschinger, C, Rössler, A, et al. B and T cell response in SARS-CoV-2 vaccination inn health care professionals with and without previous COVID-19. EBioMedicine 2021;70:103539. https://doi.org/10.1016.jbiom.2021.103539Google Scholar
Suter, RK, Rodriguez-Blanco, J, Ayad, NG. Epigenetic pathways and plasticity in brain tumors. Neurobiol Dis 2020;145:105050. https://doi.org/10.1016/j.nbd.2020.105060Google Scholar
Doll, JR, Thompson, RL, Sawtell, NM. Infectious herpes simplex virus in the brain stem is correlated with reactivation in the trigeminal ganglia. J Virol 2019;93(8):e02209-18. https://doi.org/10.1128/JVI.02209-18CrossRefGoogle ScholarPubMed
Lin, DM, Koskella, B, Lin, HC. Phage therapy: an alternative to antibiotics in the age of multidrug resistance. World J Gastrointest Pharmacol Ther 2017;83:162173. https://doi.org/10.4292/wjgpt.v8.i3.162Google Scholar
Melcher, A, Harrington, K, Vile, R. Oncolytic virotherapy as immunotherapy. Science. 2021;374:13251326. https://doi.org/10.1126/science.abk3436CrossRefGoogle ScholarPubMed
Klotz, J, Rocha, CT, Young, SD, et al. Advances in the therapy of spinal muscular atrophy. J Ped 2021;236:1320. https://doi.org/10.1016/j.jpeds.2021.06.033Google Scholar
Kumar, V, Kumar, R, Jain, VK, Nagpal, S. Preparation and characterization of nanocurcumin based hybrid virosomes as a drug delivery vehicle with enhanced anticancerous activity and reduced toxicity. Sci Rep 2021;11(1):368. https://doi.org/10.1038/s41598-020-79631-1Google Scholar
Ricardo-Lax, I, Luna, JM, Thao, TTN, et al. Replication and single-cycle delivery of SARS-CoV-2 replicons. Science 2021;374:10991106. https://doi.org/10.1126/science.abj8430CrossRefGoogle ScholarPubMed
Muik, A, Lui, BG, Wallisch, A-K, et al. Neutralization of SARS-CoV-2 omicron by BNT162b2 mRNA vaccine-elicited human sera. Science 2022;375:678680. https://doi.org/10.1126/science.abn7591Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Richard B. Tenser, Professor Emeritus of Pennsylvania State University
  • Book: Neurovirology
  • Online publication: 13 July 2023
  • Chapter DOI: https://doi.org/10.1017/9781009235563.011
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Richard B. Tenser, Professor Emeritus of Pennsylvania State University
  • Book: Neurovirology
  • Online publication: 13 July 2023
  • Chapter DOI: https://doi.org/10.1017/9781009235563.011
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Richard B. Tenser, Professor Emeritus of Pennsylvania State University
  • Book: Neurovirology
  • Online publication: 13 July 2023
  • Chapter DOI: https://doi.org/10.1017/9781009235563.011
Available formats
×