Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-14T10:21:32.324Z Has data issue: false hasContentIssue false

7 - PGSE hardware and sample problems

Published online by Cambridge University Press:  06 August 2010

William S. Price
Affiliation:
University of Western Sydney
Get access

Summary

Introduction

There are a number of potential problems that must be addressed in PGSE measurements if high quality data is to be obtained. The problems include: (i) rf interference, (ii) radiation damping and long-range dipolar interactions, (iii) convection, (iv) homogeneity of the applied magnetic field gradient, (v) background magnetic gradients, (vi) eddy currents and static magnetic field disturbances generated by the gradient pulses, and lastly (vii) gradient pulse mismatch and sample movement. Almost invariably these problems lead to increased signal attenuation and thus overestimates of the diffusion coefficient and misinterpretation of the experimental data, and it has been noted that all PGSE systems have thresholds below which artefactual attenuation exceeds diffusive attenuation. Here, we consider the origins of these problems, their symptoms and some methods to alleviate them.

RF problems

The addition of gradient coils to an NMR probe can have deleterious effects on probe performance. Due to the proximity of the gradient coils to the sample region, the gradient coils and leads can, without appropriate precautions, act as antennae and introduce rf interference. A related problem is the possible strong mutual inductance between the gradient and the rf coils. Thus, the quality factor Q (= ωL/R where ω, L and R are the resonance frequency, inductance and resistance, respectively) of the rf coil(s) are diminished resulting in longer pulses for the same flip angle, poorer decoupling efficiency and S/N.

The effects of non-ideal B1 pulses and B1 inhomogeneity are well-known on spin-echoes, but have not been widely considered with respect to NMR diffusion measurements.

Type
Chapter
Information
NMR Studies of Translational Motion
Principles and Applications
, pp. 221 - 255
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Callaghan, P. T., Komlosh, M. E., and Nydén, M., High Magnetic Field Gradient PGSE NMR in the Presence of a Large Polarizing Field. J. Magn. Reson. 133 (1998), 177–82.CrossRefGoogle ScholarPubMed
Meiboom, S. and Gill, D., Modified Spin-Echo Method for Measuring Nuclear Relaxation Times. Rev. Sci. Instrum. 29 (1958), 688–91.CrossRefGoogle Scholar
Simbrunner, J. and Zieger, G., Analysis of Three-Component Composite 180° Pulses. J. Magn. Reson. B 106 (1995), 142–6.CrossRefGoogle Scholar
Zweckstetter, M. and Holak, T. A., An Adiabatic Multiple Spin-Echo Pulse Sequence: Removal of Systematic Errors Due to Pulse Imperfections and Off-Resonance Effects. J. Magn. Reson. 133 (1998), 134–47.CrossRefGoogle ScholarPubMed
Suryan, G., Nuclear Magnetic Resonance and the Effect of the Methods of Observation. Curr. Sci. 6 (1949), 203–4.Google Scholar
Bloembergen, N. and Pound, R. V., Radiation Damping in Magnetic Resonance Experiments. Phys. Rev. 95 (1954), 8–12.CrossRefGoogle Scholar
Abragam, A., The Principles of Nuclear Magnetism. (Oxford: Clarendon Press, 1961).Google Scholar
Mao, X.-A. and Ye, C.-H., Understanding Radiation Damping in a Simple Way. Concepts Magn. Reson. 9 (1997), 173–87.3.0.CO;2-W>CrossRefGoogle Scholar
Krishnan, V. V., Radiation Damping: Suryans' Line Broadening Revisited in High Resolution NMR. Curr. Sci. 74 (1998), 1049–53.Google Scholar
Augustine, M. P., Transient Properties of Radiation Damping. Prog. NMR Spectrosc. 40 (2002), 111–50.CrossRefGoogle Scholar
Jeener, J., Dipolar Field and Radiation Damping: Collective Effects in Liquid-State NMR. In Encyclopedia of Magnetic Resonance, ed. Grant, D. M. and Harris, R. K.. vol. 9. (New York: Wiley, 2002), pp. 642–79.Google Scholar
Deville, G., Bernier, M., and Delrieux, J. M., NMR Multiple Echoes Observed in Solid 3He. Phys. Rev. B 19 (1979), 5666–88.CrossRefGoogle Scholar
Edzes, H. T., The Nuclear Magnetization as the Origin of Transient Changes in the Magnetic Field in Pulse NMR Experiments. J. Magn. Reson. 86 (1990), 293–303.Google Scholar
Levitt, M. H., Demagnetization Field Effects in Two-Dimensional Solution NMR. Concepts Magn. Reson. 8 (1996), 77–103.3.0.CO;2-L>CrossRefGoogle Scholar
Vlassenbroek, A., Jeener, J., and Broekaert, P., Macroscopic and Microscopic Fields in High-Resolution Liquid NMR. J. Magn. Reson. A 118 (1996), 234–46.CrossRefGoogle Scholar
Minot, E. D., Callaghan, P. T., and Kaplan, N., Multiple Echoes, Multiple Quantum Coherence, and the Dipolar Field: Demonstrating the Significance of Higher Order Terms in the Equilibrium Density Matrix. J. Magn. Reson. 140 (1999), 200–5.CrossRefGoogle ScholarPubMed
Ardelean, I. and Kimmich, R., Principles and Unconventional Aspects of NMR Diffusometry. In Annual Reports on NMR Spectroscopy, ed. Webb, G. A.. vol. 49. (London: Academic Press, 2003), pp. 43–115.Google Scholar
Krishnan, V. V., Radiation Damping in Microcoil NMR Probes. J. Magn. Reson. 179 (2006), 294–8.CrossRefGoogle ScholarPubMed
Krishnan, V. V., Corrigendum to ‘Radiation Damping in Micro-Coil NMR Probes’. J. Magn. Reson. 179 (2006) 294–8; 182 (2006), 178.CrossRefGoogle Scholar
Zijl, P. C. M., Johnson, M. O., Mori, S., and Hurd, R. E., Magic-Angle-Gradient Double-Quantum-Filtered COSY. J. Magn. Reson. A 113 (1995), 265–70.Google Scholar
Mattiello, D. L., Warren, W. S., Mueller, L., and Farmer, II B. T., Minimizing the Water Resonance in Biological NMR: Characterization and Suppression of Intermolecular Dipolar Interactions by Multiple-Axis Gradients. J. Am. Chem. Soc. 118 (1996), 3253–61.CrossRefGoogle Scholar
Price, W. S. and Arata, Y., The Manipulation of Water Relaxation and Water Suppression in Biological Systems Using the Water-PRESS Pulse Sequence. J. Magn. Reson. B 112 (1996), 190–2.CrossRefGoogle ScholarPubMed
Price, W. S., Hayamizu, K., and Arata, Y., Optimization of the Water-PRESS Pulse Sequence and its Integration into Pulse Sequences for Studying Biological Molecules. J. Magn. Reson. 126 (1997), 256–65.CrossRefGoogle Scholar
Huang, S. Y., Anklin, C., Walls, J. D., and Lin, Y.-Y., Sizable Concentration-Dependent Frequency Shifts in Solution NMR Using Sensitive Probes. J. Am. Chem. Soc. 126 (2004), 15936–7.CrossRefGoogle ScholarPubMed
Lin, Y.-Y., Lisitza, N., Ahn, S., and Warren, W. S., Resurrection of Crushed Magnetization and Chaotic Dynamics in Solution NMR Spectroscopy. Science 290 (2000), 118–21.CrossRefGoogle ScholarPubMed
Datta, S., Huang, S. Y., and Lin, Y.-Y., Understanding Spin Turbulence in Solution Magnetic Resonance Through Phase Space Dynamics and Instability. Concepts Magn. Reson. 28A (2006), 410–21.CrossRefGoogle Scholar
Huang, S. Y., Lin, Y.-Y., Lisitza, N., and Warren, W. S., Signal Interferences From Turbulent Spin Dynamics in Solution Nuclear Magnetic Resonance Spectroscopy. J. Chem. Phys. 116 (2002), 10325–37.CrossRefGoogle Scholar
Barjat, H., Chadwick, G. P., Morris, G. A., and Swanson, A. G., The Behaviour of Multiplet Signals under ‘Radiation Damping’ Conditions. 1. Classical Effects. J. Magn. Reson. A 117 (1995), 109–12.CrossRefGoogle Scholar
Connell, M. A., Davis, A. L., Kenwright, A. M., and Morris, G. A., NMR Measurements of Diffusion in Concentrated Samples: Avoiding Problems with Radiation Damping. Anal. Bioanal. Chem. 378 (2004), 1568–73.CrossRefGoogle ScholarPubMed
Vlassenbroek, A., Jeener, J., and Broekaert, P., Radiation Damping in High Resolution Liquid NMR: A Simulation Study. J. Chem. Phys. 103 (1995), 5886–97.CrossRefGoogle Scholar
Price, W. S., Water Signal Suppression in NMR Spectroscopy. In Annual Reports on NMR Spectroscopy, ed. Webb, G. A.. vol. 38. (London: Academic Press, 1999), pp. 289–354.Google Scholar
Price, W. S. and Wälchli, M., NMR Diffusion Measurements of Strong Signals: The PGSE-Q-Switch Experiment. Magn. Reson. Chem. 40 (2002), S128–32.CrossRefGoogle Scholar
Price, W. S., Stilbs, P., Jönsson, B., and Söderman, O., Macroscopic Background Gradient and Radiation Damping Effects on High-Field PGSE NMR Diffusion Measurements. J. Magn. Reson. 150 (2001), 49–56.CrossRefGoogle ScholarPubMed
Rodríguez, J. C., Jennings, P. A., and Melacini, G., Effect of Chemical Exchange on Radiation Damping in Aqueous Solutions of the Osmolyte Glycine. J. Am. Chem. Soc. 124 (2002), 6240–1.CrossRefGoogle ScholarPubMed
Dalvit, C. and Böhlen, J. M., Simultaneous Suppression of the H2O Double-Quantum Signal and of the Radiation-Damping Effect in Double-Quantum Experiments. J. Magn. Reson. B 113 (1996), 195–200.CrossRefGoogle ScholarPubMed
Böckmann, A. and Guittet, E., Suppression of Radiation Damping During Selective Excitation of the Water Signal: The WANTED Sequence. J. Biomol. NMR 8 (1996), 87–92.CrossRefGoogle ScholarPubMed
Sklenár, V., Suppression of Radiation Damping in Multidimensional NMR Experiments Using Magnetic Field Gradients. J. Magn. Reson. A 114 (1995), 132–5.CrossRefGoogle Scholar
Zhang, S. and Gorenstein, D. G., Suppression of Radiation Damping during Acquisition by Pulsed Field Gradients. J. Magn. Reson. A 118 (1996), 291–4.CrossRefGoogle Scholar
Barjat, H., Mattiello, D. L., and Freeman, R., Suppression of Radiation Damping in High-Resolution NMR. J. Magn. Reson. 136 (1999), 114–17.CrossRefGoogle ScholarPubMed
Goux, W. J., Verkruyse, L. A., and Salter, S. J., The Impact of Rayleigh-Benard Convection on NMR Pulsed Field Gradient Diffusion Measurements. J. Magn. Reson. 88 (1990), 609–14.Google Scholar
Jerschow, A. and Müller, N., Suppression of Convection Artifacts in Stimulated-Echo Diffusion Experiments. Double-Stimulated-Echo Experiments. J. Magn. Reson. 125 (1997), 372–5.CrossRefGoogle Scholar
Hedin, N. and Furó, I., Temperature Imaging by 1H NMR and Suppression of Convection in NMR Probes. J. Magn. Reson. 131 (1998), 126–30.CrossRefGoogle ScholarPubMed
Jerschow, A. and Müller, N., Convection Compensation in Gradient Enhanced Nuclear Magnetic Resonance Spectroscopy. J. Magn. Reson. 132 (1998), 13–18.CrossRefGoogle Scholar
Loening, N. M. and Keeler, J., Measurement of Convection and Temperature Profiles in Liquid Samples. J. Magn. Reson. 139 (1999), 334–41.CrossRefGoogle ScholarPubMed
Carr, H. Y. and Purcell, E. M., Effects of Diffusion on Free Precession in Nuclear Magnetic Resonance Experiments. Phys. Rev. 94 (1954), 630–8.CrossRefGoogle Scholar
Jerschow, A., Thermal Convection Currents in NMR: Flow Profiles and Implications for Coherence Pathway Selection. J. Magn. Reson. 145 (2000), 125–31.CrossRefGoogle ScholarPubMed
Hedin, N., Yu, T. Y., and Furó, I., Growth of C12elliptic integral of the second kind18 Micelles with Increasing Temperature. A Convection-Compensated PGSE NMR Study. Langmuir 16 (2000), 7548–50.CrossRefGoogle Scholar
Mohorič, A. and Stepišnik, J., Effect of Natural Convection in a Horizontally Oriented Cylinder on NMR Imaging of the Distribution of Diffusivity. Phys. Rev. E 62 (2000), 6628–35.CrossRefGoogle Scholar
Nilsson, M. and Morris, G. A., Improving Pulse Sequences for 3D DOSY: Convection Compensation. J. Magn. Reson. 177 (2005), 203–11.CrossRefGoogle ScholarPubMed
Lounila, J., Oikarinen, K., Ingman, P., and Jokisaari, J., Effects of Thermal Convection on NMR and their Elimination by Sample Rotation. J. Magn. Reson. A 118 (1996), 50–4.CrossRefGoogle Scholar
Augé, S., Amblard-Blondel, B., and Delsuc, M.-A., Investigation of the Diffusion Measurement Using PFG and Test of Robustness Against Experimental Conditions and Parameters. J. Chim. Phys. 96 (1999), 1559–65.CrossRefGoogle Scholar
Esturau, N., Sánchez-Ferrando, F., Gavin, J. A., Roumestand, C., Delsuc, M.-A., and Parella, T., The Use of Sample Rotation for Minimizing Convection Effects in Self-Diffusion Measurements. J. Magn. Reson. 153 (2001), 48–55.CrossRefGoogle Scholar
Hayamizu, K. and Price, W. S., A New Type of Sample Tube for Reducing Convection Effects in PGSE-NMR Measurements of Self-Diffusion Coefficients of Liquid Samples. J. Magn. Reson. 167 (2004), 328–33.CrossRefGoogle ScholarPubMed
Simorellis, A. and Flynn, P. F., A PFG Experiment for Translational Diffusion Measurements in Low-Viscosity Solvents Containing Multiple Resonances. J. Magn. Reson. 170 (2004), 322–8.CrossRefGoogle ScholarPubMed
Ogg, R. J., Kingsley, P. B., and Taylor, J. S., WET, a total time for image acquisition1- and B1-Insensitive Water-Suppression Method for In Vivo Localized 1H NMR Spectroscopy. J. Magn. Reson. B 104 (1994), 1–10.CrossRefGoogle Scholar
Smallcombe, S. H., Patt, S. L., and Keifer, P. A., WET Solvent Suppression and its Applications to LC NMR and High-Resolution NMR Spectroscopy. J. Magn. Reson. A 117 (1995), 295–303.CrossRefGoogle Scholar
Callaghan, P. T. and Khrapitchev, A. A., Time-Dependent Velocities in Porous Media Dispersive Flow. Magn. Reson. Imaging 19 (2001), 301–5.CrossRefGoogle ScholarPubMed
Callaghan, P. T. and Komlosh, M. E., Locally Anisotropic Motion in a Macroscopically Isotropic System: Displacement Correlations Measured Using Double Pulsed Gradient Spin-Echo NMR. Magn. Reson. Chem. 40 (2002), S15–19.CrossRefGoogle Scholar
Zhang, Xu, Li, C.-G., Ye, C.-H., and Liu, M.-L., Determination of Molecular Self-Diffusion Coefficient Using Multiple Spin-Echo NMR Spectroscopy with Removal of Convection and Background Gradient Artifacts. Anal. Chem. 73 (2001), 3528–34.CrossRefGoogle ScholarPubMed
Sørland, G. H., Seland, J. G., Krane, J., and Anthonsen, H. W., Improved Convection Compensating Pulsed Field Gradient Spin-Echo and Stimulated-Echo Methods. J. Magn. Reson. 142 (2000), 323–5.CrossRefGoogle ScholarPubMed
Momot, K. I. and Kuchel, P. W., Convection-Compensating PGSE Experiment Incorporating Excitation-Sculpting Water Suppression (CONVEX). J. Magn. Reson. 169 (2004), 92–101.CrossRefGoogle Scholar
Momot, K. I. and Kuchel, P. W., PFG NMR Diffusion Experiments for Complex Systems. Concepts Magn. Reson. 28A (2006), 249–69.CrossRefGoogle Scholar
Momot, K. I. and Kuchel, P. W., Convection-Compensating Diffusion Experiments with Phase-Sensitive Double-Quantum Filtering. J. Magn. Reson. 174 (2005), 229–36.CrossRefGoogle ScholarPubMed
Momot, K. I., Kuchel, P. W., and Chapman, B. E., Acquisition of Pure-Phase Diffusion Spectra Using Oscillating-Gradient Spin Echo. J. Magn. Reson. 176 (2005), 151–9.CrossRefGoogle ScholarPubMed
Damberg, P., Jarvet, J., and Gräslund, A., Accurate Measurement of Translational Diffusion Coefficients: A Practical Method to Account for Nonlinear Gradients. J. Magn. Reson. 148 (2001), 343–8.CrossRefGoogle ScholarPubMed
Morris, G. A., Diffusion-Ordered Spectroscopy (DOSY). In Encyclopedia of Nuclear Magnetic Resonance, ed. Grant, D. M. and Harris, R. K.. vol. 9. (New York: Wiley, 2002), pp. 35–44.Google Scholar
Nilsson, M. and Morris, G. A., Correction of Systematic Errors in CORE Processing of DOSY Data. Magn. Reson. Chem. 44 (2006), 655–60.CrossRefGoogle ScholarPubMed
Nilsson, M. and Morris, G. A., Improved DECRA Processing of DOSY Data: Correcting for Non-Uniform Field Gradients. Magn. Reson. Chem. 45 (2007), 656–60.CrossRefGoogle ScholarPubMed
VanderHart, D. L., Magnetic Susceptibility & High Resolution NMR of Liquids & Solids. In Encyclopedia of NMR, ed. Grant, D. M. and Harris, R. K.. vol. 5. (New York: Wiley, 1996), pp. 2938–46.Google Scholar
Glasel, J. A. and Lee, K. H., On the Interpretation of Water Nuclear Magnetic Resonance Relaxation Times in Heterogeneous Systems. J. Am. Chem. Soc. 96 (1974), 970–8.CrossRefGoogle Scholar
Gillis, P. and Koenig, S. H., Transverse Relaxation of Solvent Protons Induced by Magnetized Spheres: Application to Ferritin, Erythrocytes, and Magnetite. Magn. Reson. Med. 5 (1987), 323–45.CrossRefGoogle ScholarPubMed
Majumdar, S. and Gore, J. C., Studies of Diffusion in Random Fields Produced by Variations in Susceptibility. J. Magn. Reson. 78 (1988), 41–55.Google Scholar
Zupančič, I., Effect of the Background Gradients on PGSE NMR Diffusion Measurements. Solid State Commun. 65 (1988), 199–200.CrossRefGoogle Scholar
Zhong, J. and Gore, J. C., Studies of Restricted Diffusion in Heterogeneous Media Containing Variations in Susceptibility. Magn. Reson. Med. 19 (1991), 276–84.CrossRefGoogle ScholarPubMed
Latour, L. L., Li, L., and Sotak, C. H., Improved PFG Stimulated-Echo Method for the Measurement of Diffusion in Inhomogeneous Fields. J. Magn. Reson. B 101 (1993), 72–7.CrossRefGoogle Scholar
Stallmach, F. and Galvosas, P., Spin Echo NMR Diffusion Studies. In Annual Reports on NMR Spectroscopy, ed. Webb, G. A.. vol. 61. (New York: Elsevier, 2007), pp. 51–131.Google Scholar
Zheng, G. and Price, W. S., Suppression of Background Gradients in (B0 Gradient-Based) NMR Diffusion Experiments. Concepts Magn. Reson. 30A (2007), 261–77.CrossRefGoogle Scholar
Stejskal, E. O. and Tanner, J. E., Spin Diffusion Measurements: Spin Echoes in the Presence of a Time-Dependent Field Gradient. J. Chem. Phys. 42 (1965), 288–92.CrossRefGoogle Scholar
Tanner, J. E., Use of the Stimulated Echo in NMR Diffusion Studies. J. Chem. Phys. 52 (1970), 2523–26.CrossRefGoogle Scholar
Kärger, J., Pfeifer, H., and Rudtsch, S., The Influence of Internal Magnetic Field Gradients on NMR Self-Diffusion Measurements of Molecules Adsorbed on Microporous Crystallites. J. Magn. Reson. 85 (1989), 381–7.Google Scholar
Dusschoten, D., Jager, P. A., and As, H., Flexible PFG NMR Desensitized for Susceptibility Artifacts, Using the PFG Multiple-Spin-Echo Sequence. J. Magn. Reson. A 112 (1995), 237–40.CrossRefGoogle Scholar
Furó, I. and Jóhannesson, H., Accurate Anisotropic Water-Diffusion Measurements in Liquid Crystals. J. Magn. Reson. A 119 (1996), 15–21.CrossRefGoogle Scholar
Murday, J. S. and Cotts, R. M., Self-Diffusion in Molten Lithium. Z. Naturforsch. 26a (1971), 85–93.Google Scholar
Williams, W. D., Seymour, E. F. W., and Cotts, R. M., A Pulsed-Gradient Multiple-Spin-Echo NMR Technique for Measuring Diffusion in the Presence of Background Magnetic Field Gradients. J. Magn. Reson. 31 (1978), 271–82.Google Scholar
Moseley, M. E., Kucharczyk, J., Asgari, H. S., and Norman, D., Anisotropy in Diffusion-Weighted MRI. Magn. Reson. Med. 19 (1991), 321–6.CrossRefGoogle ScholarPubMed
Bihan, D., Molecular Diffusion, Tissue Microdynamics and Microstructure. NMR Biomed. 8 (1995), 375–86.CrossRefGoogle ScholarPubMed
Trudeau, J. D., Thomas, D. W., and Hawkins, J., The Effect of Inhomogeneous Sample Susceptibility on Measured Diffusion Anisotropy Using MRI Imaging. J. Magn. Reson. B 108 (1995), 22–30.CrossRefGoogle Scholar
Neeman, M., Freyer, J. P., and Sillerud, L. O., Pulsed-Gradient Spin-Echo Diffusion Studies in NMR Imaging. Effects of the Imaging Gradients on the Determination of the Diffusion Coefficients. J. Magn. Reson. 90 (1990), 303–12.Google Scholar
Lian, J., Williams, D. S., and Lowe, I. J., Magnetic Resonance Imaging of Diffusion in the Presence of Background Gradients and Imaging of Background Gradients. J. Magn. Reson. A 106 (1994), 65–74.CrossRefGoogle Scholar
Karlicek, Jr. R. F. and Lowe, I. J., A Modified Pulsed Gradient Technique for Measuring Diffusion in the Presence of Large Background Gradients. J. Magn. Reson. 37 (1980), 75–91.Google Scholar
Zhong, J.-H., Kennan, R. P., and Gore, J. C., Effects of Susceptibility Variations on NMR Measurements of Diffusion. J. Magn. Reson. 95 (1991), 267–80.Google Scholar
Lee, H., Shao, H., Huang, Y., and Kwak, B., Synthesis of MRI Contrast Agent by Coating Superparamagnetic Iron Oxide with Chitosan. IEEE Trans. Magn. 41 (2005), 4102–4.Google Scholar
Bax, Ad. and Freeman, R., Enhanced NMR Resolution by Restricting the Effective Sample Volume. J. Magn. Reson. 37 (1980), 177–81.Google Scholar
Hong, X. and Dixon, W. T., Measuring Diffusion in Inhomogeneous Systems in Imaging Mode Using Antisymmetric Sensitizing Gradients. J. Magn. Reson. 99 (1992), 561–70.Google Scholar
Packer, K. J., Rees, C., and Tomlinson, D. J., A Modification of the Pulsed Magnetic Field-Gradient Spin Echo Method of Studying Diffusion. Mol. Phys. 18 (1970), 421–3.CrossRefGoogle Scholar
Sevilla, E. H. and Sevilla, A., Effects of Restricted Diffusion in the Karlicek-Lowe NMR Alternating Pulsed Field Gradient Experiments. J. Magn. Reson. 79 (1988), 534–9.Google Scholar
Cotts, R. M., Hoch, M. J. R., Sun, T., and Markert, J. T., Pulsed Field Gradient Stimulated Echo Methods for Improved NMR Diffusion Measurements in Heterogeneous Systems. J. Magn. Reson. 83 (1989), 252–66.Google Scholar
Sørland, G. H., Hafskjold, B., and Herstad, O., A Stimulated-Echo Method for Diffusion Measurements in Heterogeneous Media Using Pulsed Field Gradients. J. Magn. Reson. 124 (1997), 172–6.CrossRefGoogle Scholar
Sun, P. Z., Seland, J. G., and Cory, D., Background Gradient Suppression in Pulsed Gradient Stimulated Echo Measurements. J. Magn. Reson. 161 (2003), 168–73.CrossRefGoogle ScholarPubMed
Galvosas, P., Stallmach, F., and Kärger, J., Background Gradient Suppression in Stimulated Echo NMR Diffusion Studies Using Magic Pulsed Field Gradient Ratios. J. Magn. Reson. 166 (2004), 164–73.CrossRefGoogle ScholarPubMed
Vasenkov, S., Galvosas, P., Geier, O., Nestle, N., Stallmach, F., and Kärger, J., Determination of Genuine Diffusivities in Heterogeneous Media Using Stimulated Echo Pulsed Field Gradient NMR. J. Magn. Reson. 149 (2001), 228–33.CrossRefGoogle ScholarPubMed
Sun, P. Z., Smith, S. A., and Zhou, J., Analysis of the Magic Asymmetric Gradient Stimulated Echo Sequence with Shaped Gradients. J. Magn. Reson. 171 (2004), 324–9.CrossRefGoogle ScholarPubMed
Robertson, S., Hughes, D. G., Liu, Q., and Allen, P. S., Analysis of the Temporal and Spatial Dependence of the Eddy Currents in a 40-cm Bore Magnet. Magn. Reson. Med. 25 (1992), 158–66.CrossRefGoogle Scholar
Reese, T. G., Heid, O., Weisskopf, R. M., and Wedeen, V. J., Reduction of Eddy-Current-Induced Distortion in Diffusion MRI Using a Twice-Refocused Spin Echo. Magn. Reson. Med. 49 (2003), 177–82.CrossRefGoogle ScholarPubMed
Czisch, M., Ross, A., Cieslar, C., and Holak, T. A., Some Practical Aspects of B0 Gradient Pulses. J. Biomol. NMR 7 (1996), 121–30.CrossRefGoogle Scholar
Hrovat, M. I. and Wade, C. G., NMR Pulsed-Gradient Diffusion Measurements I. Spin-Echo Stability and Gradient Calibration. J. Magn. Reson. 44 (1981), 62–75.Google Scholar
Hrovat, M. I. and Wade, C. G., NMR Pulsed Gradient Diffusion Measurements. II. Residual Gradients and Lineshape Distortions. J. Magn. Reson. 45 (1981), 67–80.Google Scholar
Meerwall, E. and Kamat, M., Effect of Residual Field Gradients on Pulsed Gradient NMR Diffusion Measurements. J. Magn. Reson. 83 (1989), 309–23.Google Scholar
Zhu, X. X. and Macdonald, P. M., Empirical Compensation Function for Eddy Current Effects in Pulsed Field Gradient Nuclear Magnetic Resonance Experiments. Solid State Nucl. Magn. Reson. 4 (1995), 217–27.CrossRefGoogle ScholarPubMed
Burl, M. and Young, I. R., Eddy Currents & Their Control. In Encyclopedia of Nuclear Magnetic Resonance, ed. Grant, D. M. and Harris, R. K.. vol. 3. (New York: Wiley, 1996), pp. 1841–6.Google Scholar
Schiff, J., Rotem, H., Stokar, S., and Kaplan, N., New Efficient Eddy-Field-Mapping Procedure (FAME). J. Magn. Reson. B 104 (1994), 73–6.CrossRefGoogle Scholar
Terpstra, M., Andersen, P. M., and Gruetter, R., Localized Eddy Current Compensation Using Quantitative Field Mapping. J. Magn. Reson. 131 (1998), 139–43.CrossRefGoogle ScholarPubMed
Goodyear, D. J., Shea, M., Beyea, S. D., Shah, N. J., and Balcom, B. J., Single Point Measurements of Magnetic Field Gradient Waveform. J. Magn. Reson. 163 (2003), 1–7.CrossRefGoogle ScholarPubMed
Jellúš, V., Sharp, J. C., Tomanek, B., and Latta, P., An NMR Technique for Measurement of Magnetic Field Gradient Waveforms. J. Magn. Reson. 162 (2003), 189–97.CrossRefGoogle ScholarPubMed
Appel, M. and Fleischer, G., Investigation of the Chain Length Dependence of Self-Diffusion of Poly(dimethyl siloxane) and Poly(ethylene oxide) in the Melt with Pulsed Field Gradient NMR. Macromolecules 26 (1993), 5520–5.CrossRefGoogle Scholar
Heink, W., Kärger, J., Seiffert, G., Fleischer, G., and Rauchfuss, J., PFG NMR Self-Diffusion Measurements with Large Field Gradients. J. Magn. Reson. A 114 (1995), 101–4.CrossRefGoogle Scholar
Price, W. S., Hayamizu, K., Ide, H., and Arata, Y., Strategies for Diagnosing and Alleviating Artifactual Attenuation Associated with Large Gradient Pulses in PGSE NMR Diffusion Measurements. J. Magn. Reson. 139 (1999), 205–12.CrossRefGoogle ScholarPubMed
Price, W. S., Pulsed Field Gradient NMR as a Tool for Studying Translational Diffusion, Part II. Experimental Aspects. Concepts Magn. Reson. 10 (1998), 197–237.3.0.CO;2-S>CrossRefGoogle Scholar
Vaals, J. J. and Bergman, A. H., Optimization of Eddy-Current Compensation. J. Magn. Reson. 90 (1990), 52–70.Google Scholar
Majors, P. D., Blackley, J. L., Altobelli, S. A., A. Caprihan, and E. Fukushima, Eddy Current Compensation by Direct Field Detection and Digital Gradient Modification. J. Magn. Reson. 87 (1990), 548–53.Google Scholar
Jehenson, P., Westphal, M., and Schuff, N., Analytical Method for the Compensation of Eddy-Current Effects Induced by Pulsed Magnetic Field Gradients in NMR Systems. J. Magn. Reson. 90 (1990), 264–78.Google Scholar
Wysong, R. E., Madio, D. P., and Lowe, I. J., A Novel Eddy Current Compensation Scheme for Pulsed Gradient Systems. Magn. Reson. Med. 31 (1994), 572–5.CrossRefGoogle ScholarPubMed
Wysong, R. E. and Lowe, I. J., A Simple Method of Measuring Gradient Induced Eddy Currents to Set Compensation Networks. Magn. Reson. Med. 29 (1993), 119–21.CrossRefGoogle ScholarPubMed
Morich, M. A., Lampman, D. A., Dannels, W. R., and Goldie, F. T. D., Exact Temporal Eddy Current Compensation in Magnetic Resonance Imaging Systems. IEEE Trans. Med. Imaging 7 (1988), 247–54.CrossRefGoogle ScholarPubMed
Jehenson, P. and Syrota, A., Correction of Distortions Due to the Pulsed Magnetic Field Gradient-Induced Shift in B0 Field by Postprocessing. Magn. Reson. Med. 12 (1989), 253–6.CrossRefGoogle ScholarPubMed
Basser, P. J., Mattiello, J., and Bihan, D., Estimation of the Effective Self-Diffusion Tensor from the NMR Spin Echo. J. Magn. Reson. B 103 (1994), 247–54.CrossRefGoogle ScholarPubMed
Söderman, O. and Stilbs, P., NMR Studies of Complex Surfactant Systems. Prog. NMR Spectrosc. 26 (1994), 445–82.CrossRefGoogle Scholar
Price, W. S. and Kuchel, P. W., Effect of Nonrectangular Field Gradient Pulses in the Stejskal and Tanner (Diffusion) Pulse Sequence. J. Magn. Reson. 94 (1991), 133–9.Google Scholar
Gross, B. and Kosfeld, R., Anwendung der Spin-Echo-Methode bei der Messung der Selbstdiffusion. Messtechnik 7 (1969), 171–7.Google Scholar
Bihan, D., Molecular Diffusion Nuclear Magnetic Resonance Imaging. Magn. Reson. Q. 7 (1991), 1–30.Google ScholarPubMed
Griffiths, L., Horton, R., and Cosgrove, T., NMR Diffusion Measurements Using Refocused Three-Pulse Stimulated Echoes. J. Magn. Reson. 90 (1990), 254–63.Google Scholar
Gibbs, S. J. and Johnson, Jr. C. S., A PFG NMR Experiment for Accurate Diffusion and Flow Studies in the Presence of Eddy Currents. J. Magn. Reson. 93 (1991), 395–402.Google Scholar
Wu, D., Chen, A., and Johnson, Jr. C. S., An Improved Diffusion-Ordered Spectroscopy Experiment Incorporating Bipolar-Gradient Pulses. J. Magn. Reson. A 115 (1995), 260–4.CrossRefGoogle Scholar
Wider, G., Dötsch, V., and Wüthrich, K., Self-Compensating Pulsed Magnetic-Field Gradients for Short Recovery Times. J. Magn. Reson. A 108 (1994), 255–8.CrossRefGoogle Scholar
Morris, K. F. and Johnson, Jr. C. S., Diffusion-Ordered Two-Dimensional Nuclear Magnetic Resonance Spectroscopy. J. Am. Chem. Soc. 114 (1992), 3139–41.CrossRefGoogle Scholar
Boerner, R. M. and Woodward, W. S., A Computer-Controlled Bipolar Magnetic-Field-Gradient Driver for NMR Electrophoretic and Self-Diffusion Measurements. J. Magn. Reson. A 106 (1994), 195–202.CrossRefGoogle Scholar
Ordridge, R. J. and Cresshull, I. D., The Correction of Transient B0 Field Shifts Following the Application of Pulsed Gradients by Phase Correction in the Time Domain. J. Magn. Reson. 69 (1986), 151–5.Google Scholar
Barache, D., Antoine, J.-P., and Dereppe, J.-M., The Continuous Wavelet Transform, an Analysis Tool for NMR Spectroscopy. J. Magn. Reson. 128 (1997), 1–11.CrossRefGoogle Scholar
Morris, G. A., Compensation of Instrumental Imperfections by Deconvolution Using an Internal Reference Signal. J. Magn. Reson. 80 (1988), 547–52.Google Scholar
Barjat, H., Morris, G. A., Smart, S., Swanson, A. G., and Williams, S. C. R., High-Resolution Diffusion-Ordered 2D Spectroscopy (HR-DOSY) – A New Tool for the Analysis of Complex Mixtures. J. Magn. Reson. B 108 (1995), 170–2.CrossRefGoogle Scholar
Morris, G. A., Barjat, H., and Horne, T. J., Reference Deconvolution Methods. Prog. NMR Spectrosc. 31 (1997), 197–257.CrossRefGoogle Scholar
Callaghan, P. T., PGSE-MASSEY, a Sequence for Overcoming Phase Instability in Very-High-Gradient Spin-Echo NMR. J. Magn. Reson. 88 (1990), 493–500.Google Scholar
Callaghan, P. T., Principles of Nuclear Magnetic Resonance Microscopy. (Oxford: Clarendon Press, 1991).Google Scholar
Callaghan, P. T., Jolley, K. W., and Trotter, C. M., Stable and Accurate Spin Echoes in Pulsed Gradient NMR. J. Magn. Reson. 39 (1980), 525–7.Google Scholar
Stilbs, P., Fourier Transform Pulsed-Gradient Spin-Echo Studies of Molecular Diffusion. Prog. NMR Spectrosc. 19 (1987), 1–45.CrossRefGoogle Scholar
Bär, N. K., Kärger, J., Krause, C., Schmitz, W., and Seiffert, G., Pitfalls in PFG NMR Self-Diffusion Measurements with Powder Samples. J. Magn. Reson. A 113 (1995), 278–80.CrossRefGoogle Scholar
Galvosas, P., Stallmach, F., Seiffert, G., Kärger, J., Kaess, U., and Majer, G., Generation and Application of Ultra-High-Intensity Magnetic Field Gradient Pulses for NMR Spectroscopy. J. Magn. Reson. 151 (2001), 260–8.CrossRefGoogle Scholar
Peschier, L. J. C., Bouwstra, J. A., Bleyser, J., Junginger, H. E., and Leyte, J. C., Cross-Relaxation Effects in Pulsed-Field-Gradient Stimulated-Echo Measurements on Water in a Macromolecular Matrix. J. Magn. Reson. B 110 (1996), 150–7.CrossRefGoogle Scholar
Chen, A. and Shapiro, M., Nuclear Overhauser Effect on Diffusion Measurements. J. Am. Chem. Soc. 121 (1999), 5338–9.CrossRefGoogle Scholar
Dvinskikh, S. V. and Furó, I., Cross-Relaxation Effects in Stimulated-Echo-Type PGSE NMR Experiments by Bipolar and Monopolar Gradient Pulses. J. Magn. Reson. 146 (2000), 283–9.CrossRefGoogle ScholarPubMed
Yan, J., Kline, A. D., Mo, H., Zartler, E. R., and Shapiro, M. J., Epitope Mapping of Ligand-Receptor Interactions by Diffusion NMR. J. Am. Chem. Soc. 124 (2002), 9984–5.CrossRefGoogle ScholarPubMed
Avram, L. and Cohen, Y., Diffusion Measurements for Molecular Capsules: Pulse Sequences Effect on Water Signal Decay. J. Am. Chem. Soc. 127 (2005), 5714–19.CrossRefGoogle ScholarPubMed
Kessler, H., Gehrke, M., and Griesinger, C., Two-Dimensional NMR Spectroscopy: Background and Overview of the Experiments. Angew. Chem. (Int. Ed. Engl.) 27 (1988), 490–536.CrossRefGoogle Scholar
Pelta, M. D., Barjat, H., Morris, G. A., Davis, A. L., and Hammond, S. J., Pulse Sequences for High-Resolution Diffusion-Ordered Spectroscopy (HR-DOSY). Magn. Reson. Chem. 36 (1998), 706–14.3.0.CO;2-W>CrossRefGoogle Scholar
Torres, A. M., Cruz, R. Dela, and Price, W. S., Removal of J-coupling peak distortion in PGSE experiments. J. Magn. Reson. 193 (2008), 311–6.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×