Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-14T10:28:17.764Z Has data issue: false hasContentIssue false

6 - Setup and analysis of PGSE experiments

Published online by Cambridge University Press:  06 August 2010

William S. Price
Affiliation:
University of Western Sydney
Get access

Summary

Introduction

This chapter is concerned with the practical issues and key considerations involved in setting up PGSE experiments and the subsequent data analysis. Selection of PGSE parameters is discussed in Section 6.2 and sample preparation is discussed in Section 6.3. The various methods of gradient calibration are considered in Section 6.4. Finally, PGSE data analysis and display are considered in Section 6.5. Under favourable conditions it is possible to measure diffusion coefficients with greater than 99% accuracy. Indeed simple PGSE experiments have been shown to be reasonably robust with respect to experimental parameters (e.g., rf pulse flip angle). It cannot be overemphasised that the overall accuracy of a diffusion measurement is intimately connected to the accuracy of the gradient calibration. It is too easy to confuse the apparent precision of a diffusion measurement obtained from analysing the PGSE data with the true overall accuracy. For example, the PGSE data obtained from an experiment may be highly single exponential, but the gradient calibration or temperature control may have been inaccurate such that the analysis of the PGSE data leads to a highly precise but unfortunately a highly inaccurate diffusion coefficient.

Irrespective of the aim of the PGSE experiment, the analysis is always simplified by starting with a distortion-free data set with good signal-to-noise and, especially when the system has multiple components, good resolution.

Type
Chapter
Information
NMR Studies of Translational Motion
Principles and Applications
, pp. 198 - 220
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Furó, I. and Jóhannesson, H., Accurate Anisotropic Water-Diffusion Measurements in Liquid Crystals. J. Magn. Reson A. 119 (1996), 15–21.CrossRefGoogle Scholar
Augé, S., Amblard-Blondel, B., and Delsuc, M.-A., Investigation of the Diffusion Measurement Using PFG and Test of Robustness Against Experimental Conditions and Parameters. J. Chim. Phys. 96 (1999), 1559–65.CrossRefGoogle Scholar
Morris, G. A., Diffusion-Ordered Spectroscopy (DOSY). In Encyclopedia of Nuclear Magnetic Resonance, ed. Grant, D. M. and Harris, R. K.. vol. 9. (New York: Wiley, 2002), pp. 35–44.Google Scholar
Hinton, D. P. and Johnson, Jr. C. S., Diffusion Ordered 2D NMR Spectroscopy of Phospholipid Vesicles: Determination of Vesicle Size Distributions. J. Phys. Chem. 97 (1993), 9064–72.CrossRefGoogle Scholar
Labadie, C., Gounot, D., Mauss, Y., and Dumitresco, B., Data Sampling in MR Relaxation. Magn. Reson. Mater. Phys. Bio. Med. 2 (1994), 383–5.CrossRefGoogle Scholar
Johnson, Jr. C. S., Diffusion Ordered Nuclear Magnetic Resonance Spectroscopy: Principles and Applications. Prog. NMR Spectrosc. 34 (1999), 203–56.CrossRefGoogle Scholar
Song, Y.-Q., Venkataramanan, L., and Burcaw, L., Determining the Resolution of Laplace Inversion Spectrum. J. Chem. Phys. 122 (2005), 104104-1–104104-10.CrossRefGoogle ScholarPubMed
Hrovat, M. I. and Wade, C. G., NMR Pulsed Gradient Diffusion Measurements. II. Residual Gradients and Lineshape Distortions. J. Magn. Reson. 45 (1981), 67–80.Google Scholar
Bedet, J., Canet, D., Leclerc, S., Mutzenhardt, P., Stemmelen, D., and Trausch, G., Optimal Conditions for Two-Point Estimation of Self-Diffusion Coefficients Through rf Gradient NMR Experiments. Chem. Phys. Lett. 408 (2005), 237–40.CrossRefGoogle Scholar
Stait-Gardner, T., Kumar, P. G. Anil and Price, W. S., Steady State Effects in PGSE NMR Diffusion Studies. Chem. Phys. Lett. 462 (2008), 331–6.CrossRefGoogle Scholar
Price, W. S., Pulsed Field Gradient NMR as a Tool for Studying Translational Diffusion, Part II. Experimental Aspects. Concepts Magn. Reson. 10 (1998), 197–237.3.0.CO;2-S>CrossRefGoogle Scholar
Chen, A., Johnson, Jr. C. S., Lin, M., and Shapiro, M. J., Chemical Exchange in Diffusion NMR Experiments. J. Am. Chem. Soc. 120 (1998), 9094–5.CrossRefGoogle Scholar
Silva-Crawford, M., Gerstein, B. C., Kuo, A.-L., and Wade, C. G., Diffusion in Rigid Bilayer Membranes. Use of Combined Multiple Pulse and Multiple Pulse Gradient Technqiues in Nuclear Magnetic Resonance. J. Am. Chem. Soc. 102 (1980), 3728–32.CrossRefGoogle Scholar
Dvinskikh, S. V., Sitnikov, R., and Furó, I., 13C PGSE NMR Experiment with Heteronuclear Dipolar Decoupling to Measure Diffusion in Liquid Crystals and Solids. J. Magn. Reson. 142 (2000), 102–10.CrossRefGoogle ScholarPubMed
Furó, I. and Dvinskikh, S. V., NMR Methods Applied to Anisotropic Diffusion. Magn. Reson. Chem. 40 (2002), S3–14.CrossRefGoogle Scholar
Dvinskikh, S. V. and Furó, I., Nuclear Magnetic Resonance Studies of Translational Diffusion in Thermotropic Liquid Crystals. Russ. Chem. Rev. 75 (2006), 497–506.CrossRefGoogle Scholar
Everhart, C. H. and Johnson, Jr. C. S., The Determination of Tracer Diffusion Coefficients for Proteins by Means of Pulsed Field Gradient NMR with Applications to Hemoglobin. J. Magn. Reson. 48 (1982), 466–74.Google Scholar
Stilbs, P., Fourier Transform Pulsed-Gradient Spin-Echo Studies of Molecular Diffusion. Prog. NMR Spectrosc. 19 (1987), 1–45.CrossRefGoogle Scholar
Zijl, P. C. M. and Moonen, C. T. W., Complete Water Suppression for Solutions of Large Molecules Based on Diffusional Differences between Solute and Solvent (DRYCLEAN). J. Magn. Reson. 87 (1990), 18–25.Google Scholar
Price, W. S., Water Signal Suppression in NMR Spectroscopy. In Annual Reports on NMR Spectroscopy, ed. Webb, G. A.. vol. 38. (London: Academic Press, 1999), pp. 289–354.Google Scholar
Haase, A., Frahm, J., Hänicke, W., and Matthei, D., 1H NMR Chemical Shift Selective (CHESS) Imaging. Phys. Med. Biol. 30 (1985), 341–4.CrossRefGoogle ScholarPubMed
Doddrell, D. M., Galloway, G. J., Brooks, W. M., Field, J., Bulsing, J. M., Irving, M. G., and Baddeley, H., Water Signal Elimination in Vivo, Using ‘Suppression by Mistimed Echo and Repetitive Gradient Episodes’. J. Magn. Reson. 70 (1986), 176–80.Google Scholar
Altieri, A. S. and Byrd, R. A., Randomization Approach to Water Suppression in Multidimensional NMR Using Pulsed Field Gradients. J. Magn. Reson. B 107 (1995), 260–6.CrossRefGoogle ScholarPubMed
Czisch, M., Ross, A., Cieslar, C., and Holak, T. A., Some Practical Aspects of B0 Gradient Pulses. J. Biomol. NMR 7 (1996), 121–30.CrossRefGoogle Scholar
Moonen, C. T. W. and Zijl, P. C. M., Highly Effective Water Suppression for In Vivo Proton NMR Spectroscopy (DRYSTEAM). J. Magn. Reson. 88 (1990), 28–41.Google Scholar
Smallcombe, S. H., Patt, S. L., and Keifer, P. A., WET Solvent Suppression and its Applications to LC NMR and High-Resolution NMR Spectroscopy. J. Magn. Reson. A 117 (1995), 295–303.CrossRefGoogle Scholar
Lin, Y.-Y., Lisitza, N., Ahn, S., and Warren, W. S., Resurrection of Crushed Magnetization and Chaotic Dynamics in Solution NMR Spectroscopy. Science 290 (2000), 118–21.CrossRefGoogle ScholarPubMed
Datta, S., Huang, S. Y., and Lin, Y.-Y., Understanding Spin Turbulence in Solution Magnetic Resonance Through Phase Space Dynamics and Instability. Concepts Magn. Reson. 28A (2006), 410–21.CrossRefGoogle Scholar
Price, W. S. and Wälchli, M., NMR Diffusion Measurements of Strong Signals: The PGSE-Q-Switch Experiment. Magn. Reson. Chem. 40 (2002), S128–32.CrossRefGoogle Scholar
Liu, M., Nicholson, J. K., and Lindon, J. C., High-Resolution Diffusion and Relaxation Edited One and Two-Dimensional 1H NMR Spectroscopy of Biological Fluids. Anal. Chem. 68 (1996), 3370–6.CrossRefGoogle ScholarPubMed
Price, W. S., Elwinger, F., Vigouroux, C., and Stilbs, P., PGSE-WATERGATE, a New Tool for NMR Diffusion-Based Studies of Ligand-Macromolecule Binding. Magn. Reson. Chem. 40 (2002), 391–5.CrossRefGoogle Scholar
Zheng, G., Stait-Gardner, T., Kumar, P. G. Anil, Torres, A. M., and Price, W. S., PGSTE-WATERGATE: A Stimulated-Echo-Based PGSE NMR Sequence with Excellent Solvent Suppression. J. Magn. Reson. 191 (2008), 159–63.CrossRefGoogle Scholar
Xia, Y., Contrast in NMR Imaging and Microscopy. Concepts Magn. Reson. 8 (1996), 205–25.3.0.CO;2-2>CrossRefGoogle Scholar
Antalek, B., Using Pulsed Gradient Spin Echo NMR for Chemical Mixture Analysis: How to Obtain Optimum Results. Concepts Magn. Reson. 14 (2002), 225–58.CrossRefGoogle Scholar
Chmurny, G. N. and Hoult, D. I., The Ancient and Honourable Art of Shimming. Concepts Magn. Reson. 2 (1990), 131–49.CrossRefGoogle Scholar
Miner, V. W. and Conover, W. W., Shimming of Superconducting Magnets. In Encyclopedia of Nuclear Magnetic Resonance, ed. Grant, D. M. and Harris, R. K.. vol. 7. (New York: Wiley, 1996), pp. 4340–56.Google Scholar
Weiger, M., Speck, T., and Fey, M., Gradient Shimming with Spectrum Optimisation. J. Magn. Reson. 182 (2006), 38–48.CrossRefGoogle ScholarPubMed
Wu, D.-H., Woodward, W. S., and Johnson, Jr. C. S., A Sample Spinner for Vibration-Sensitive Liquid-State Experiments with Application to Diffusion-Ordered 2D NMR. J. Magn. Reson. A 104 (1993), 231–3.CrossRefGoogle Scholar
Taylor, J. R., An Introduction to Error Analysis, 2nd edn. (New York: University Science Books, 1997).Google Scholar
Neeman, M., Freyer, J. P., and Sillerud, L. O., Pulsed-Gradient Spin-Echo Diffusion Studies in NMR Imaging. Effects of the Imaging Gradients on the Determination of the Diffusion Coefficients. J. Magn. Reson. 90 (1990), 303–12.Google Scholar
Mattiello, J., Basser, P. J., and Bihan, D., Analytical Expressions for the gradient or diffusion weighting factor Matrix in NMR Diffusion Imaging and Spectroscopy. J. Magn. Reson. A 108 (1994), 131–41.CrossRefGoogle Scholar
Eis, M. and Hoehn-Berlage, M., Correction of Gradient Crosstalk and Optimization of Measurement Parameters in Diffusion MR Imaging. J. Magn. Reson. B 107 (1995), 222–34.CrossRefGoogle Scholar
Kärger, J., Pfeifer, H., and Heink, W., Principles and Applications of Self-Diffusion Measurements by Nuclear Magnetic Resonance. Adv. Magn. Reson. 12 (1988), 1–89.CrossRefGoogle Scholar
Basser, P. J., Mattiello, J., and Bihan, D., Estimation of the Effective Self-Diffusion Tensor from the NMR Spin Echo. J. Magn. Reson. B 103 (1994), 247–54.CrossRefGoogle ScholarPubMed
Holz, M. and Weingärtner, H., Calibration in Accurate Spin-Echo Self-Diffusion Measurements Using 1H and Less-Common Nuclei. J. Magn. Reson. 92 (1991), 115–25.Google Scholar
Holz, M., Heil, S. R., and Sacco, A., Temperature-Dependent Self-Diffusion Coefficients of Water and Six Selected Molecular Liquids for Calibration in Accurate 1H NMR PFG Measurements. Phys. Chem. Chem. Phys. 2 (2000), 4740–2.CrossRefGoogle Scholar
Tofts, P. S., Lloyd, D., Clark, C. A., Barker, G. J., Parker, G. J. M., McConville, P., Baldock, C., and Pope, J. M., Test Liquids for Quantitative MRI Measurements of Self-Diffusion Coefficient In Vivo. Magn. Reson. Med. 43 (2000), 368–74.3.0.CO;2-B>CrossRefGoogle ScholarPubMed
Callaghan, P. T. and Coy, A., Evidence for Reptational Motion and the Entanglement Tube in Semidilute Polymer Solutions. Phys. Rev. Lett. 68 (1992), 3176–9.CrossRefGoogle ScholarPubMed
Weingärtner, H., Self-Diffusion in Liquid Water. A Reassessment. Z. Phys. Chem. 132 (1982), 129–49.CrossRefGoogle Scholar
Mills, R., Self-Diffusion in Normal and Heavy Water in the Range 1–45°. J. Phys. Chem. 77 (1973), 685–8.CrossRefGoogle Scholar
Collings, A. F. and Mills, R., Temperature-Dependence of Self-Diffusion for Benzene and Carbon Tetrachloride. J. Chem. Soc., Faraday Trans. 66 (1970), 2761–6.CrossRefGoogle Scholar
Holz, M., Haselmeier, R., Mazitov, R. K., and Weingärtner, H., Self-Diffusion of Neon in Water by 21Ne NMR. J. Am. Chem. Soc. 116 (1994), 801–2.CrossRefGoogle Scholar
Mills, R. and Lobo, V. V. M., Self Diffusion in Electrolyte Solutions. (Amsterdam: Elsevier, 1989).Google Scholar
Weingärtner, H., Haselmeier, R., and Holz, M., 129Xe NMR as a New Tool for Studying Gas Diffusion in Liquids: Self-Diffusion of Xenon in Water. Chem. Phys. Lett. 195 (1992), 596–601.CrossRefGoogle Scholar
Carr, H. Y. and Purcell, E. M., Effects of Diffusion on Free Precession in Nuclear Magnetic Resonance Experiments. Phys. Rev. 94 (1954), 630–8.CrossRefGoogle Scholar
Douglass, D. C. and McCall, D. W., Diffusion in Paraffin Hydrocarbons. J. Phys. Chem. 62 (1958), 1102–7.CrossRefGoogle Scholar
McCall, D. W., Douglass, D. C., and Anderson, E. W., Self-Diffusion Studies by Means of Nuclear Magnetic Resonance Spin-Echo Techniques. Ber. Bunsenges. Phys. Chem. 67 (1963), 336–40.CrossRefGoogle Scholar
Fukushima, E. and Roeder, S. B. W., Experimental Pulse NMR A Nuts and Bolts Approach. (London: Addison-Wesley, 1981).Google Scholar
Hrovat, M. I. and Wade, C. G., NMR Pulsed-Gradient Diffusion Measurements I. Spin-Echo Stability and Gradient Calibration. J. Magn. Reson. 44 (1981), 62–75.Google Scholar
Saarinen, T. R. and Johnson, Jr. C. S., Imaging of Transient Magnetization Gratings in NMR. Analogies with Laser-Induced Gratings and Applications to Diffusion and Flow. J. Magn. Reson. 78 (1988), 257–70.Google Scholar
Murday, J. S., Measurement of Magnetic Field Gradient by Its Effect on the NMR Free Induction Decay. J. Magn. Reson. 10 (1973), 111–20.Google Scholar
Vold, R. L., Vold, R. R., and Simon, H. E., Errors in Measurements of Transverse Relaxation Rates. J. Magn. Reson. 11 (1973), 283–98.Google Scholar
Fukushima, E., Gibson, A. A. V., and Scott, T. A., Carbon-13 NMR of Carbon Monoxide. II. Molecular Diffusion and Spin-Rotation Interaction in Liquid CO. J. Chem. Phys. 71 (1979), 1531–6.CrossRefGoogle Scholar
Lamb, D. M., Grandinetti, P. J., and Jonas, J., Fixed Field Gradient NMR Diffusion Measurements Using Bessel Function Fits to the Spin-Echo Signal. J. Magn. Reson. 72 (1987), 532–9.Google Scholar
Hrovat, M. I. and Wade, C. G., Absolute Measurements of Diffusion Coefficients by Pulsed Nuclear Magnetic Resonance. J. Chem. Phys. 73 (1980), 2509–10.CrossRefGoogle Scholar
Wright, A. C., Bataille, H., Ong, H. H., Wehrli, S. L., Song, H. K., and Wehrli, F. W., Construction and Calibration of a 50 T/m z-Gradient Coil for Quantitative Diffusion Microimaging. J. Magn. Reson. 186 (2007), 17–25.CrossRefGoogle ScholarPubMed
Yadav, N., Torres, A. M., and Price, W. S., An Improved Approach to Calibrating High Magnetic Field Gradients for Pulsed Field Gradient Experiments. J. Magn. Reson. 194 (2008), 25–8.CrossRefGoogle ScholarPubMed
Huo, R., Wehrens, R., and Buydens, L. M. C., Improved DOSY NMR Data Processing by Data Enhancement and Combination of Multivariate Curve Resolution with Non-Linear Least Square Fitting. J. Magn. Reson. 169 (2004), 257–69.CrossRefGoogle ScholarPubMed
Price, W. S., Tsuchiya, F., and Arata, Y., Lysozyme Aggregation and Solution Properties Studied Using PGSE NMR Diffusion Measurements. J. Am. Chem. Soc. 121 (1999), 11503–12.CrossRefGoogle Scholar
Connell, M. A., Davis, A. L., Kenwright, A. M., and Morris, G. A., NMR Measurements of Diffusion in Concentrated Samples: Avoiding Problems with Radiation Damping. Anal. Bioanal. Chem. 378 (2004), 1568–73.CrossRefGoogle ScholarPubMed
Todica, M. and Pop, A., Algorithm for the Evaluation of the Self-Diffusion Coefficient of Small Molecules, Using the NMR Magnetic Field Gradient Method. Int. J. Mod. Phys. B 16 (2002), 2875–84.CrossRefGoogle Scholar
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., Numerical Recipes, 3rd edn. (Cambridge: Cambridge University Press, 2007).Google Scholar
Lennon, A. J., Scott, N. R., Chapman, B. E., and Kuchel, P. W., Hemoglobin Affinity for 2,3-Bisphosphoglycerate in Solutions and Intact Erythrocytes: Studies Using Pulsed-Field Gradient Nuclear Magnetic Resonance and Monte Carlo Simulations. Biophys. J. 67 (1994), 2096–109.CrossRefGoogle ScholarPubMed
Lamanna, R., On the Inversion of Multicomponent NMR Relaxation and Diffusion Decays in Heterogeneous Systems. Concepts Magn. Reson. 26A (2005), 78–90.CrossRefGoogle Scholar
Brand, T., Cabrita, E. J., and Berger, S., Intermolecular Interaction as Investigated by NOE and Diffusion Studies. Prog. NMR Spectrosc. 46 (2005), 159–96.CrossRefGoogle Scholar
Nilsson, M., Connell, M. A., Davis, A. L., and Morris, G. A., Biexponential Fitting of Diffusion-Ordered NMR Data: Practicalities and Limitations. Anal. Chem. 78 (2006), 3040–5.CrossRefGoogle ScholarPubMed
Provencher, S. W., An Eigenfunction Expansion Method for the Analysis of Exponential Recovery Decay Curves. J. Chem. Phys. 64 (1976), 2772–7.CrossRefGoogle Scholar
Provencher, S. W., A Fourier Method for the Analysis of Exponential Decay Curves. Biophys. J. 16 (1976), 27–41.CrossRefGoogle ScholarPubMed
Provencher, S. W. and Vogel, R. H., Regularization Techniques for Inverse Problems in Molecular Biology. In Numerical Treatment of Inverse Problems in Differential and Integral Equations, ed. Deuflhard, P. and Hairer, E.. (Boston: Birkhäuser, 1983), pp. 304–19.CrossRefGoogle Scholar
Morris, K. F. and Johnson, Jr. C. S., Resolution of Discrete and Continuous Molecular Size Distributions by Means of Diffusion-Ordered 2D NMR Spectroscopy. J. Am. Chem. Soc. 115 (1993), 4291–9.CrossRefGoogle Scholar
Provencher, S. W., A Constrained Regularization Method for Inverting Data Represented by Linear Algebraic or Integral Equations. Comput. Phys. Commun. 27 (1982), 213–27.CrossRefGoogle Scholar
Provencher, S. W., Contin: A General Purpose Constrained Regularization Program for Inverting Noisy Linear Algebraic and Integral Equations. Comput. Phys. Commun. 27 (1982), 229–42.CrossRefGoogle Scholar
Weese, J., A Regularization Method for Nonlinear Ill-Posed Problems. Comput. Phys. Commun. 77 (1993), 429–40.CrossRefGoogle Scholar
Roths, T., Marth, M., Weese, J., and Honerkamp, J., A Generalized Regularization Method for Nonlinear Ill-Posed Problems Enhanced for Nonlinear Regularization Terms. Comput. Phys. Commun. 139 (2001), 279–96.CrossRefGoogle Scholar
Delsuc, M. A. and Malliavin, T. E., Maximum Entropy Processing of DOSY NMR Spectra. Anal. Chem. 70 (1998), 2146–8.CrossRefGoogle Scholar
Malliavin, T. E., Louis, V., and Delsuc, M. A., The DOSY Experiment Provides Insights into the Protein–Lipid Interactions. J. Chim. Phys. 95 (1998), 178–86.CrossRefGoogle Scholar
Mouro, C., Mutzenhardt, P., Diter, B., and Canet, D., HR-DOSY Experiments with Radiofrequency Field Gradients (RFG) and Their Processing According to the HD Method. Magn. Reson. Chem. 40 (2002), S133–8.CrossRefGoogle Scholar
Sebastião, R. C., Pacheco, C. N., Braga, J. P., and Piló-Veloso, D., Diffusion Coefficient Distribution from NMR-DOSY Experiments Using Hopfield Neural Network. J. Magn. Reson. 182 (2006), 22–8.CrossRefGoogle ScholarPubMed
Stilbs, P. and Paulsen, K., Global Least-Squares Analysis of Large, Correlated Spectral Data Sets and Application to Chemical Kinetics and Time-Resolved Fluoresence. Rev. Sci. Instrum. 67 (1996), 4380–6.CrossRefGoogle Scholar
Stilbs, P., Paulsen, K., and Griffiths, P. C., Global Least-Squares Analysis of Large, Correlated Spectral Data Sets: Application to Component-Resolved FT-PGSE NMR Spectroscopy. J. Phys. Chem. 100 (1996), 8180–9.CrossRefGoogle Scholar
Stilbs, P., Component Separation in NMR Imaging and Multidimensional Spectroscopy through Global Least-Squares Analysis, Based on Prior Knowledge. J. Magn. Reson. 135 (1998), 236–41.CrossRefGoogle ScholarPubMed
Nilsson, M. and Morris, G. A., Correction of Systematic Errors in CORE Processing of DOSY Data. Magn. Reson. Chem. 44 (2006), 655–60.CrossRefGoogle ScholarPubMed
Kubista, M., A New Method for the Analysis of Correlated Data Using Procrustes Rotation Which is Suitable for Spectral Analysis. Chemom. Intell. Lab. Syst. 7 (1990), 273–9.CrossRefGoogle Scholar
Schulze, D. and Stilbs, P., Analysis of Multicomponent FT-PGSE Experiments by Multivariate Statistical Methods Applied to the Complete Bandshapes. J. Magn. Reson. A. 105 (1993), 54–8.CrossRefGoogle Scholar
Antalek, B. and Windig, W., Generalized Rank Annihilation Method Applied to a Single Multicomponent Pulsed Gradient Spin Echo NMR Data Set. J. Am. Chem. Soc. 118 (1996), 10331–2.CrossRefGoogle Scholar
Windig, W. and Antalek, B., Direct Exponential Curve Resolution Algorithm (DECRA): A Novel Application of the Generalized Rank Annihilation Method for a Single Spectral Mixture Data Set with Exponentially Decaying Contribution Profiles. Chemom. Intell. Lab. Sys. 37 (1997), 241–54.CrossRefGoogle Scholar
Antalek, B., Hewitt, J. M., Windig, W., Yacobucci, P. D., Mourey, T., and Le, K., The Use of PGSE NMR and DECRA for Determining Polymer Composition. Magn. Reson. Chem. 40 (2002), S60–71.CrossRefGoogle Scholar
Antalek, B. J., Accounting for Spin Relaxation in Quantitative Pulse Gradient Spin Echo NMR Mixture Analysis. J. Am. Chem. Soc. 128 (2006), 8402–3.CrossRefGoogle ScholarPubMed
Antalek, B., Using PGSE NMR for Chemical Mixture Analysis: Quantitative Aspects. Concepts Magn. Reson. 30A (2007), 219–35.CrossRefGoogle Scholar
Alam, T. M. and Alam, M. K., Effect of Non-Exponential and Multi-Exponential Decay Behavior on the Performance of the Direct Exponential Curve Resolution Algorithm (DECRA) in NMR Investigations. J. Chemom. 17 (2003), 583–93.CrossRefGoogle Scholar
Gorkom, L. C. M. and Hancewicz, T. M., Analysis of DOSY and GPC-NMR Experiments on Polymers by Multivariate Curve Resolution. J. Magn. Reson. 130 (1998), 125–30.CrossRefGoogle ScholarPubMed
Huo, R., Wehrens, R., Duynhoven, J., and Buydens, L. M. C., Assessment of Techniques for DOSY NMR Data Processing. Anal. Chim. Acta 490 (2003), 231–51.CrossRefGoogle Scholar
Huo, R., Molengraaf, R. A., Pikkemaat, J. A., Wehrens, R., and Buydens, L. M. C., Diagnostic Analysis of Experimental Artefacts in DOSY NMR Data by Covariance Matrix of the Residuals. J. Magn. Reson. 172 (2005), 346–8.CrossRefGoogle ScholarPubMed
Huo, R., Wehrens, R., and Buydens, L. M. C., Robust DOSY NMR Data Analysis. Chemom. Intell. Lab. Syst. 85 (2007), 9–19.CrossRefGoogle Scholar
Xie, Y.-L. and Hopke, P. K., Positive Matrix Factorization Applied to a Curve Resolution Problem. J. Chemom. 12 (1998), 357–64.3.0.CO;2-S>CrossRefGoogle Scholar
Widjaja, E. and Garland, M., Entropy Minimization and Spectral Dissimilarity Curve Resolution Technique Applied to Nuclear Magnetic Resonance Data Sets. J. Magn. Reson. 173 (2005), 175–82.CrossRefGoogle ScholarPubMed
Smith, L. M., Maher, A. D., Cloarec, O., Rantaleinin, M., Tang, H., Elliott, P., Stamler, J., Lindon, J. C., Holmes, E., and Nicholson, J. K., Statistical Correlation and Projection Methods for Improved Information Recovery from Diffusion-Edited NMR Spectra of Biological Samples. Anal. Chem. 79 (2007), 5682–9.CrossRefGoogle ScholarPubMed
Chen, J., Shaka, A. J., and Mandelshtam, V. A., RRT: The Regularized Resolvent Transform for High-Resolution Spectral Estimation. J. Magn. Reson. 147 (2000), 129–37.CrossRefGoogle ScholarPubMed
Armstrong, G. S., Loening, N. M., Curtis, J. E., Shaka, A. J., and Mandelshtam, V. A., Processing DOSY Spectra Using the Regularized Resolvent Transform. J. Magn. Reson. 163 (2003), 139–48.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×