Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-14T10:15:19.095Z Has data issue: false hasContentIssue false

8 - Specialised PGSE and related techniques

Published online by Cambridge University Press:  06 August 2010

William S. Price
Affiliation:
University of Western Sydney
Get access

Summary

Introduction

This chapter primarily deals with specialised NMR pulse sequences for measuring diffusion and flow. Sequences for MRI applications are given in Chapter 9. Steady gradient methods and especially those involving the stray field of superconducting magnets are outside the scope of the present work and so only a brief coverage is given in Section 8.2. Multiple-quantum and heteronuclear measurements are covered in Section 8.3. There has been considerable development of fast diffusion pulse sequences and these are covered in Section 8.4. Methods for handling samples that contain overlapping resonances with differences in relaxation time are considered in Section 8.5. Multi-dimensional methods for mixture separation and diffusion editing are presented in Section 8.6. Double PGSE and multi-dimensional motional correlation experiments are discussed in Section 8.7. Flow and Electrophoretic NMR are covered in Sections 8.8 and 8.9, respectively. Finally, the use of long-range dipolar interactions and miscellaneous sequences are presented in Section 8.10.

Steady gradient and stray field measurements

The earliest gradient-based diffusion measurements were based on the (technically simple) steady gradient experiments as discussed in Chapter 2. However, due to the limitations mentioned in Section 2.2.4, PGSE has generally overshadowed SGSE.

Type
Chapter
Information
NMR Studies of Translational Motion
Principles and Applications
, pp. 256 - 295
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kimmich, R., Unrath, W., Schnur, G., and Rommel, E., NMR Measurement of Small Self-Diffusion Coefficients in the Fringe Field of Superconducting Magnets. J. Magn. Reson. 91 (1991), 136–40.Google Scholar
Farrher, G., Ardelean, I., and Kimmich, R., Probing Four Orders of Magnitude of the Diffusion Time in Porous Silica Glass with Unconventional NMR Techniques. J. Magn. Reson. 182 (2006), 215–20.CrossRefGoogle ScholarPubMed
Norwood, T. J. and Quilter, R. A., A Robust NMR Method for Studying Diffusion. J. Magn. Reson. 97 (1992), 99–110.Google Scholar
Norwood, T. J., New NMR Methods for Measuring Diffusion. J. Magn. Reson. A 103 (1993), 258–67.CrossRefGoogle Scholar
McDonald, P. J., Stray Field Magnetic Resonance Imaging. Prog. NMR Spectrosc. 30 (1997), 69–99.CrossRefGoogle Scholar
McDonald, P. J. and Newling, B., Stray Field Magnetic Resonance Imaging. Rep. Prog. Phys. 61 (1998), 1441–93.CrossRefGoogle Scholar
Geil, B., Measurement of Translational Molecular Diffusion Using Ultrahigh Magnetic Field Gradient NMR. Concepts Magn. Reson. 10 (1998), 299–321.3.0.CO;2-S>CrossRefGoogle Scholar
Demco, D. E., Johansson, A., and Tegenfeldt, J., Constant-Relaxation Methods for Diffusion Measurements in the Fringe Field of Superconducting Magnets. J. Magn. Reson. A 110 (1994), 183–93.CrossRefGoogle Scholar
Fischer, E. and Kimmich, R., Constant Time Steady Gradient NMR Diffusometry Using the Secondary Stimulated Echo. J. Magn. Reson. 166 (2004), 273–9.CrossRefGoogle ScholarPubMed
Kimmich, R. and Fischer, E., One- and Two-Dimensional Pulse Sequences for Diffusion Experiments in the Fringe Field of Superconducting Magnets. J. Magn. Reson. A 106 (1994), 229–35.CrossRefGoogle Scholar
Feiweier, T., Geil, B., Isfort, O., and Fujara, F., Demonstrating Spatial Resolution of Field Gradient NMR. J. Magn. Reson. 131 (1998), 203–8.CrossRefGoogle ScholarPubMed
Sigmund, E. E. and Halperin, W. P., Hole-Burning Diffusion Measurements in High Magnetic Field Gradients. J. Magn. Reson. 163 (2003), 99–104.CrossRefGoogle ScholarPubMed
Hürlimann, M. D. and Griffin, D. D., Spin Dynamics of Carr–Purcell–Meiboom–Gill-like Sequences in Grossly Inhomogeneous B0 and B1 Fields and Application to NMR Well Logging. J. Magn. Reson. 143 (2000), 120–35.CrossRefGoogle Scholar
Freed, D. E., Scheven, U. M., Zielinski, L. J., Sen, P. N., and Hürlimann, M. D., Steady-State Free Precession Experiments and Exact Treatment of Diffusion in a Uniform Gradient. J. Chem. Phys. 115 (2001), 4249–58.CrossRefGoogle Scholar
Hürlimann, M. D., Carr–Purcell Sequences with Composite Pulses. J. Magn. Reson. 152 (2001), 109–23.CrossRefGoogle ScholarPubMed
Hürlimann, M. D., Optimization of Timing in the Carr–Purcell–Meiboom–Gill Sequence. Magn. Reson. Imaging 19 (2001), 375–8.CrossRefGoogle ScholarPubMed
Hürlimann, M. D., Diffusion and Relaxation Effects in General Stray Field NMR Experiments. J. Magn. Reson. 148 (2001), 367–78.CrossRefGoogle ScholarPubMed
Leu, G., Fordham, E. J., Hürlimann, M. D., and Frulla, P., Fixed and Pulsed Gradient Diffusion Methods in Low-Field Core Analysis. Magn. Reson. Imaging 23 (2005), 305–9.CrossRefGoogle ScholarPubMed
Wilson, R. C. and Hürlimann, M. D., Relationship Between Susceptibility Induced Field Inhomogeneities, Restricted Diffusion, and Relaxation in Sedimentary Rocks. J. Magn. Reson. 183 (2006), 1–12.CrossRefGoogle ScholarPubMed
Hürlimann, M. D., Encoding of Diffusion and total time for image acquisition1 in the CPMG Echo Shape: Single-Shot self-diffusion coefficient and total time for image acquisition1 Measurements in Grossly Inhomogeneous Fields. J. Magn. Reson. 184 (2007), 114–29.CrossRefGoogle Scholar
Preston, A. R., Kinchesh, P., and Randall, E. W., Calibration of the Stray Field Gradient by a Heteronuclear Method and by Field Profiling. J. Magn. Reson. 146 (2000), 359–62.CrossRefGoogle ScholarPubMed
Callaghan, P. T., Eccles, C. D., and Seymour, J. D., An Earth's Field Nuclear Magnetic Resonance Apparatus Suitable for Pulsed Gradient Spin Echo Measurements of Self-Diffusion under Arctic Conditions. Rev. Sci. Instrum. 68 (1997), 4263–70.CrossRefGoogle Scholar
Callaghan, P. T., Coy, A., Dykstra, R., Eccles, C. D., Halse, M. E., Hunter, M. W., Mercier, O. R., and Robinson, J. N., New Zealand Developments in Earth's Field NMR. Appl. Magn. Reson. 32 (2007), 63–74.CrossRefGoogle Scholar
Stepišnik, J., Violation of the Gradient Approximation in NMR Self-Diffusion Measurements. Z. Phys. Chem. 190 (1995), 51–62.CrossRefGoogle Scholar
Mohorič, A., Stepišnik, J., Kos, M., and Planinšič, G., Self-Diffusion Imaging by Spin Echo in Earth's Magnetic Field. J. Magn. Reson. 136 (1999), 22–6.CrossRefGoogle ScholarPubMed
Callaghan, P. T. and Stepišnik, J., Spatially-Distributed Pulsed Field Gradient Spin Echo NMR using Single-Wire Proximity. Phys. Rev. Lett. 75 (1995), 4532–5.CrossRefGoogle Scholar
Martin, J. F., Selwyn, L. S., Vold, R. R., and Vold, R. L., The Determination of Translational Diffusion Constants in Liquid Crystals from Pulsed Field Gradient Double Quantum Spin Echo Decays. J. Chem. Phys. 76 (1982), 2632–4.CrossRefGoogle Scholar
Zax, D. and Pines, A., Study of Anisotropic Diffusion of Oriented Molecules by Multiple Quantum Spin Echoes. J. Chem. Phys. 78 (1983), 6333–4.CrossRefGoogle Scholar
Kay, L. E. and Prestegard, J. H., An Application of Pulse-Gradient Double Quantum Spin Echoes to Diffusional Measurements on Molecules with Scalar-Coupled Spins. J. Magn. Reson. 67 (1986), 103–13.Google Scholar
Chapman, B. E. and Kuchel, P. W., Sensitivity in Heteronuclear Multiple-Quantum Diffusion Experiments. J. Magn. Reson. A 102 (1993), 105–9.CrossRefGoogle Scholar
Kuchel, P. W. and Chapman, B. E., Heteronuclear Double-Quantum-Coherence Selection with Magnetic-Field Gradients in Diffusion Experiments. J. Magn. Reson. A 101 (1993), 53–9.CrossRefGoogle Scholar
Dam, L., Andreasson, Bo., and Nordenskiöld, L., Multiple-Quantum Pulsed Gradient NMR Diffusion Experiments on Quadrupolar (I > 1/2) Spins. Chem. Phys. Lett. 262 (1996), 737–43.Google Scholar
Sotak, C. H., A Method for Measuring the Apparent Self-Diffusion Coefficient of in Vivo Lactic Acid Using Double-Quantum Coherence-Transfer Spectroscopy. J. Magn. Reson. 90 (1990), 198–204.Google Scholar
Dalvit, C. and Böhlen, J. M., Analysis of Biofluids and Chemical Mixtures in Non-deuterated Solvents with 1H Diffusion-Weighted PFG Phase-Sensitive Double Quantum NMR Spectroscopy. NMR Biomed. 10 (1997), 285–91.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
Momot, K. I. and Kuchel, P. W., Convection-Compensating Diffusion Experiments with Phase-Sensitive Double-Quantum Filtering. J. Magn. Reson. 174 (2005), 229–36.CrossRefGoogle ScholarPubMed
Norwood, T. J., An Eddy-Current-Independent Multiple-Quantum Method for Measuring the Diffusion of Coupled Spins. J. Magn. Reson. 99 (1992), 208–13.Google Scholar
Dalvit, C. and Böhlen, J. M., Multiple-Solvent Suppression in Double-Quantum NMR Experiments with Magic Angle Pulsed Field Gradients. Magn. Reson. Chem. 34 (1996), 829–33.3.0.CO;2-Z>CrossRefGoogle Scholar
Callaghan, P. T., Gros, M. A., and Pinder, D. N., The Measurement of Diffusion Using Deuterium Pulsed Gradient Nuclear Magnetic Resonance. J. Chem. Phys. 79 (1983), 6372–81.CrossRefGoogle Scholar
Furó, I. and Halle, B., 2D Quadrupolar-Echo Spectroscopy with Coherence Selection and Optimized Pulse Angle. J. Magn. Reson. 98 (1992), 388–407.Google Scholar
Furó, I. and Jóhannesson, H., Accurate Anisotropic Water-Diffusion Measurements in Liquid Crystals. J. Magn. Reson. A 119 (1996), 15–21.CrossRefGoogle Scholar
Wu, D., Chen, A., and Johnson, Jr. C. S., Heteronuclear-Detected Diffusion-Ordered NMR Spectroscopy through Coherence Transfer. J. Magn. Reson. A 123 (1996), 215–18.CrossRefGoogle Scholar
Dingley, A. J., Mackay, J. P., Shaw, G. L., Hambly, B. D., and King, G. F., Measuring Macromolecular Diffusion Using Heteronuclear Multiple-Quantum Pulsed-Field-Gradient NMR. J. Biomol. NMR 10 (1997), 1–8.CrossRefGoogle ScholarPubMed
Dalvit, C., Ramage, P., and Hommel, U., Heteronuclear X-Filter 1H PFG Double-Quantum Experiments for the Proton Resonance Assignment of a Ligand Bound to a Protein. J. Magn. Reson. 131 (1998), 148–53.CrossRefGoogle ScholarPubMed
Tillett, M. L., Horsfield, M. A., Lian, L.-Y., and Norwood, T. J., Protein-Ligand Interactions Measured by 15N-Filtered Diffusion Experiments. J. Biomol. NMR 13 (1999), 223–32.CrossRefGoogle ScholarPubMed
Liu, M., Mao, X.-A., Ye, C., Nicholson, J. K., and Lindon, J. C., Enhanced Effect of Magnetic Field Gradients Using Multiple Quantum NMR Spectroscopy Applied to Self-Diffusion Coefficient Measurement. Mol. Phys. 93 (1998), 913–20.CrossRefGoogle Scholar
Luo, R.-S., Liu, M., and Mao, X.-A., Eliminating Systematic Error in Multiple Quantum Diffusion Measurements by Bipolar Gradient Pulses. Meas. Sci. Technol. 9 (1998), 1347–50.CrossRefGoogle Scholar
Ferrage, F., Zoonens, M., Warschawski, D. E., Popot, J.-L., and Bodenhausen, G., Slow Diffusion of Macromolecular Assemblies by a New Pulsed Field Gradient NMR Method. J. Am. Chem. Soc. 125 (2003), 2541–5.CrossRefGoogle ScholarPubMed
Ferrage, F., Zoonens, M., Warschawski, D. E., Popot, J.-L., and Bodenhausen, G., Slow Diffusion of Macromolecular Assemblies by a New Pulsed Field Gradient NMR Method. J. Am. Chem. Soc. 126 (2004), 5654.CrossRefGoogle Scholar
Norwood, T. J., Magnetic Field Gradients in NMR: Friend or Foe?Chem. Soc. Rev. 23 (1994), 59–66.CrossRefGoogle Scholar
Hall, L. D. and Norwood, T. J., A New Method for Studying Diffusion Using a Static Magnetic Field Gradient. J. Magn. Reson. 88 (1990), 192–8.Google Scholar
Cavadini, S., Dittmer, J., Antonijevic, S., and Bodenhausen, G., Slow Diffusion by Singlet State NMR Spectroscopy. J. Am. Chem. Soc. 127 (2005), 15744–48.CrossRefGoogle ScholarPubMed
Cavadini, S. and Vasos, P. R., Singlet States Open the Way to Longer Time-Scales in the Measurement of Diffusion by NMR Spectroscopy. Concepts Magn. Reson. 32A (2008), 68–78.CrossRefGoogle Scholar
Sousa, P. L., Abergel, D., and Lallemand, J.-Y., Experimental Time Saving in NMR Measurement of Time Dependent Diffusion Coefficients. Chem. Phys. Lett. 342 (2001), 45–50.CrossRefGoogle Scholar
Packer, K. J., The Study of Slow Coherent Molecular Motion by Pulsed Nuclear Magnetic Resonance. Mol. Phys. 17 (1969), 355–68.CrossRefGoogle Scholar
Song, Y.-Q., Hürlimann, M. D., and Flaum, C., A Method for Rapid Characterization of Diffusion. J. Magn. Reson. 161 (2003), 222–33.CrossRefGoogle ScholarPubMed
Li, L. and Sotak, C. H., Diffusion Measurements by Pulsed Field-Gradient Multiple Spin Echoes. J. Magn. Reson. 92 (1991), 411–20.Google Scholar
Li, L. and Sotak, C. H., Self-Diffusion Measurements by Pulsed-Gradient Multiple Spin-Echo Imaging. J. Magn. Reson. B 101 (1993), 8–16.CrossRefGoogle Scholar
Mair, R. W., Cory, D. G., Peled, S., Tseng, C.-H., Patz, S., and Walsworth, R. L., Pulsed-Field-Gradient Measurements of Time-Dependent Gas Diffusion. J. Magn. Reson. 135 (1998), 478–86.CrossRefGoogle ScholarPubMed
Gelderen, P., Olson, A., and Moonen, C. T. W., A Single-Shot Diffusion Experiment. J. Magn. Reson. A 103 (1993), 105–8.CrossRefGoogle Scholar
Doran, S. J. and Décorps, M., A Robust, Single-Shot Method for Measuring Diffusion Coefficients Using the ‘Burst’ Sequence. J. Magn. Reson. A 117 (1995), 311–16.CrossRefGoogle Scholar
Doran, S. J., Bourgeois, M. E., and Leach, M. O., Burst Imaging – Can It Ever be Useful in the Clinic?Concepts Magn. Reson. 26A (2005), 11–34.CrossRefGoogle Scholar
Peled, S., Tseng, C.-H., Sodickson, A., Mair, R. W., Walsworth, R. L., and Cory, D. G., Single-Shot Diffusion Measurement in Laser-Polarized Gas. J. Magn. Reson. 140 (1999), 320–4.CrossRefGoogle ScholarPubMed
Song, Y.-Q. and Tang, X., A One-Shot Method for Measurement of Diffusion. J. Magn. Reson. 170 (2004), 136–48.CrossRefGoogle ScholarPubMed
Sigmund, E. E., Cho, H., and Song, Y.-Q., Multiple-Modulation-Multiple-Echo Magnetic Resonance. Concepts Magn. Reson. 30A (2007), 358–77.CrossRefGoogle Scholar
Tang, X.-P., Sigmund, E. E., and Song, Y.-Q., Simultaneous Measurement of Diffusion Along Multiple Directions. J. Am. Chem. Soc. 126 (2004), 16336–7.CrossRefGoogle ScholarPubMed
Velan, S. Sendhil and Chandrakumar, N., High-Resolution NMR Measurement of Molecular Self-Diffusion by Fast Multi-Spin-Echo Diffusion Studies. J. Magn. Reson. A 123 (1996), 122–5.CrossRefGoogle Scholar
Stamps, J. P., Ottink, B., Visser, J. M., Duynhoven, J. P. M., and Hulst, R., Difftrain: A Novel Approach to a True Spectroscopic Single-Scan Diffusion Measurement. J. Magn. Reson. 151 (2001), 28–31.CrossRefGoogle ScholarPubMed
Buckley, C., Hollingsworth, C. A., Sederman, A. J., Holland, D. J., Johns, M. L., and Gladden, L. F., Applications of Fast Diffusion Measurement Using Difftrain. J. Magn. Reson. 161 (2003), 112–17.CrossRefGoogle ScholarPubMed
Cotts, R. M., Hoch, M. J. R., Sun, T., and Markert, J. T., Pulsed Field Gradient Stimulated Echo Methods for Improved NMR Diffusion Measurements in Heterogeneous Systems. J. Magn. Reson. 83 (1989), 252–66.Google Scholar
Millet, O. and Pons, M., A New Method for Measuring Diffusion Coefficients by 2D NMR Using Accordion Spectroscopy. J. Magn. Reson. 131 (1998), 166–9.CrossRefGoogle ScholarPubMed
Bodenhausen, G. and Ernst, R. R., Direct Determination of Rate Constants of Slow Dynamic Processes by Two-Dimensional ‘Accordion’ Spectroscopy in Nuclear Magnetic Resonance. J. Am. Chem. Soc. 104 (1982), 1304–9.CrossRefGoogle Scholar
Loening, N. M., Keeler, J., and Morris, G. A., One-Dimensional DOSY. J. Magn. Reson. 153 (2001), 103–12.CrossRefGoogle ScholarPubMed
Thrippleton, M. J., Loening, N. M., and Keeler, J., A Fast Method for the Measurement of Diffusion Coefficients: One-Dimensional DOSY. Magn. Reson. Chem. 41 (2003), 441–7.CrossRefGoogle Scholar
Böhlen, J. M., Burghardt, I., Rey, M., and Bodenhausen, G., Frequency-Modulated ‘Chirp’ Pulses for Broadband Inversion Recovery in Magnetic Resonance. J. Magn. Reson. 90 (1990), 183–91.Google Scholar
Pelta, M. D., Morris, G. A., Stchedroff, M. J., and Hammond, S. J., A One-Shot Sequence for High Resolution Diffusion Ordered Spectroscopy. Magn. Reson. Chem. 40 (2002), S147–52.CrossRefGoogle Scholar
Métais, A. and Mariette, F., Determination of Water Self-Diffusion Coefficient in Complex Food Products by Low Field 1H PFG-NMR: Comparison Between the Standard Spin-Echo Sequence and the total time for image acquisition1-Weighted Spin-Echo Sequence. J. Magn. Reson. 165 (2003), 265–75.CrossRefGoogle Scholar
Enden, J. C., Waddington, D., Aalst, H., Kralingen, C. G., and Packer, K. J., Rapid Determination of Water Droplet Size Distributions by PFG-NMR. J. Colloid Interface Sci. 140 (1990), 105–13.CrossRefGoogle Scholar
Heink, W., Kärger, J., and Pfeifer, H., A Simple Pulse Sequence to Exclude Artifacts in Self-Diffusion Measurements by Means of the NMR Pulsed Field Gradient Technique. Z. Phys. Chem. 170 (1991), 199–206.Google Scholar
Dusschoten, D., Jager, P. A., and As, H., Extracting Diffusion Constants from Echo-Time-Dependent PFG NMR Data using Relaxation-Time Information. J. Magn. Reson. A 116 (1995), 22–8.CrossRefGoogle Scholar
Dusschoten, D., Moonen, C. T. W., Jager, P. A., and As, H., Unraveling Diffusion Constants in Biological Tissue by Combining Carr–Purcell–Meiboom–Gill Imaging and Pulsed Field Gradient NMR. Magn. Reson. Med. 36 (1996), 907–13.CrossRefGoogle ScholarPubMed
Stanisz, G. J., Li, J. G., Wright, G. A., and Henkelman, R. M., Water Dynamics in Human Blood via Combined Measurements of total time for image acquisition2 Relaxation and Diffusion in the Presence of Gadolinium. Magn. Reson. Med. 39 (1998), 223–33.CrossRefGoogle Scholar
Dixon, A. M. and Larive, C. K., Modified Pulsed-Field Gradient NMR Experiments for Improved Selectivity in the Measurement of Diffusion Coefficients in Complex Mixtures: Application to the Analysis of the Suwannee River Fulvic Acid. Anal. Chem. 69 (1997), 2122–8.CrossRefGoogle ScholarPubMed
Otto, W. H. and Larive, C. K., Improved Spin-Echo-Edited NMR Diffusion Measurements. J. Magn. Reson. 153 (2001), 273–6.CrossRefGoogle ScholarPubMed
Birlirakis, N. and Guittet, E., A New Approach in the Use of Gradients for Size-Resolved 2D-NMR Experiments. J. Am. Chem. Soc. 118 (1996), 13083–4.CrossRefGoogle Scholar
Casieri, C., Testa, C., Paci, M., and Luca, F., Molecular Self-Diffusion Measurement by Stimulated Echo of Selected 13C–1H Bonds: Case of the Glucose Metabolites. Chem. Phys. Lett. 387 (2004), 295–300.CrossRefGoogle Scholar
Nesmelova, I. V., Idiyatullin, D., and Mayo, K. H., Measuring Protein Self-Diffusion in Protein–Protein Mixtures Using a Pulsed Gradient Spin-Echo Technique with WATERGATE and Isotope Filtering. J. Magn. Reson. 166 (2004), 129–33.CrossRefGoogle ScholarPubMed
Nilsson, M., Gil, A. M., Delgadillo, I., and Morris, G. A., Improving Pulse Sequences for 3D Diffusion-Ordered NMR Spectroscopy: 2DJ-IDOSY. Anal. Chem. 76 (2004), 5418–22.CrossRefGoogle ScholarPubMed
Wu, D., Chen, A., and Johnson, Jr. C. S., Three-Dimensional Diffusion-Ordered NMR Spectroscopy: The Homonuclear COSY-DOSY Experiment. J. Magn. Reson. A 121 (1996), 88–91.CrossRefGoogle Scholar
Nilsson, M., Gil, A. M., Delgadillo, I., and Morris, G. A., Improving Pulse Sequences for 3D DOSY: COSY-IDOSY. Chem. Commun. (2005), 1737–9.CrossRefGoogle ScholarPubMed
Stchedroff, M. J., Kenwright, A. M., Morris, G. A., Nilsson, M., and Harris, R. K., 2D and 3D DOSY Methods for Studying Mixtures of Oligomeric Dimethylsiloxanes. Phys. Chem. Chem. Phys. 6 (2004), 3221–7.CrossRefGoogle Scholar
Barjat, H., Morris, G. A., and Swanson, A. G., A Three-Dimensional DOSY-HMQC Experiment for the High-Resolution Analysis of Complex Mixtures. J. Magn. Reson. 131 (1998), 131–8.CrossRefGoogle ScholarPubMed
Vitorge, B. and Jeanneat, D., NMR Diffusion Measurements in Complex Mixtures Using Constant-Time-HSQC-IDOSY and Computer-Optimized Spectral Aliasing for High Resolution in the Carbon Dimension. Anal. Chem. 78 (2006), 5601–6.CrossRefGoogle ScholarPubMed
Gozansky, E. K. and Gorenstein, D. G., DOSY-NOESY: Diffusion-Ordered NOESY. J. Magn. Reson. B 111 (1996), 94–6.CrossRefGoogle ScholarPubMed
Liu, M., Nicholson, J. K., and Lindon, J. C., High-Resolution Diffusion and Relaxation Edited One and Two-Dimensional 1H NMR Spectroscopy of Biological Fluids. Anal. Chem. 68 (1996), 3370–6.CrossRefGoogle ScholarPubMed
Jerschow, A. and Müller, N., 3D Diffusion-Ordered TOCSY for Slowly Diffusing Molecules. J. Magn. Reson. A 123 (1996), 222–5.CrossRefGoogle Scholar
Liu, M., Nicholson, J. K., Parkinson, J. A., and Lindon, J. C., Measurement of Biomolecular Diffusion Coefficients in Blood Plasma Using Two-Dimensional 1H-1H Diffusion-Edited Total-Correlation NMR Spectroscopy. Anal. Chem. 69 (1997), 1504–9.CrossRefGoogle ScholarPubMed
Bradley, S. A., Krishnamurthy, K., and Hu, H., Simplifying DOSY Spectra with Selective TOCSY Edited Preparation. J. Magn. Reson. 172 (2005), 110–17.CrossRefGoogle ScholarPubMed
Lucas, L. H., Otto, W. H., and Larive, C. K., The 2D-J-DOSY Experiment: Resolving Diffusion Coefficients in Mixtures. J. Magn. Reson. 156 (2002), 138–45.CrossRefGoogle ScholarPubMed
Nilsson, M. and Morris, G. A., Improving Pulse Sequences for 3D DOSY: Convection Compensation. J. Magn. Reson. 177 (2005), 203–11.CrossRefGoogle ScholarPubMed
Steinbeck, C. A. and Chmelka, B. F., Rapid 1H{13C} – Resolved Diffusion and Spin-Relaxation Measurements by NMR Spectroscopy. J. Am. Chem. Soc. 127 (2005), 11624–35.CrossRefGoogle ScholarPubMed
Moonen, C. T. W., Gelderen, P., Vuister, G. W., and Zijl, P. C. M., Gradient-Enhanced Exchange Spectroscopy. J. Magn. Reson. 97 (1992), 419–25.Google Scholar
Lee, J. H., Labadie, C., Springer, Jr. C. S., and Harbison, G. S., Two-Dimensional Inverse Laplace Transform NMR: Altered Relaxation Times Allow Detection of Exchange Correlation. J. Am. Chem. Soc. 115 (1993), 7761–4.CrossRefGoogle Scholar
Song, Y.-Q., Venkataramanan, L., Hürlimann, M. D., Flaum, M., Frulla, P., and Straley, C., total time for image acquisition1–total time for image acquisition2 Correlation Spectra Obtained Using a Fast Two-Dimensional Laplace Inversion. J. Magn. Reson. 154 (2002), 261–8.CrossRefGoogle Scholar
Venkataramanan, L., Song, Y.-Q., and Hürlimann, M. D., Solving Fredholm Integrals of the First Kind with Tensor Product Structure in 2 and 2.5 Dimensions. IEEE Trans. Signal Process. 50 (2002), 1017–26.CrossRefGoogle Scholar
Callaghan, P. T., Godefroy, S., and Ryland, B. N., Use of the Second Dimension in PGSE NMR Studies of Porous Media. Magn. Reson. Imaging 21 (2003), 243–8.CrossRefGoogle ScholarPubMed
Song, Y.-Q., Venkataramanan, L., and Burcaw, L., Determining the Resolution of Laplace Inversion Spectrum. J. Chem. Phys. 122 (2005), 104104-1–104104-10.CrossRefGoogle ScholarPubMed
Arns, C. H., Washburn, K. E., and Callaghan, P. T., Multidimensional NMR Inverse Laplace Spectroscopy in Petrophysics. Petrophysics. 48 (2007), 380–92.Google Scholar
Callaghan, P. T., Arns, C. H., Galvosas, P., Hunter, M. J., Qiao, Y., and Washburn, K. E., Recent Fourier and Laplace Perspectives for Multidimensional NMR in Porous Media. Magn. Reson. Imaging 25 (2007), 441–4.CrossRefGoogle ScholarPubMed
Ernst, R. R., Bodenhausen, G., and Wokaun, A., Principles of Magnetic Resonance in One and Two Dimensions. (London: Clarendon Press, 1987).Google Scholar
Cory, D. G., Garroway, A. N., and Miller, J. B., Applications of Spin Transport as a Probe of Local Geometry. Polym. Prepr. 31 (1990), 149–52.Google Scholar
Callaghan, P. T., How Two Pairs of Gradient Pulses Give Access to New Information about Molecular Dynamics. In Diffusion Fundamentals, ed. Kärger, J., Grinberg, F., and Heitjans, P.. (Leipzig: University of Leipzig, 2005), pp. 321–38.Google Scholar
Li, L. M. and Sotak, C. H., A Method for Evaluating Anisotropic and Restricted Diffusion by Simultaneous Use of Spin and Stimulated Echoes. J. Magn. Reson. 96 (1992), 501–13.Google Scholar
Mitra, P. P., Multiple Wave-Vector Extensions of the NMR Pulsed-Field-Gradient Spin-Echo Diffusion Measurement. Phys. Rev. B 51 (1995), 15074–8.CrossRefGoogle ScholarPubMed
Özarslan, E. and Basser, P. J., MR Diffusion – ‘Diffraction’ Phenomenon in Multi-Pulse-Field-Gradient Experiments. J. Magn. Reson. 188 (2007), 285–94.CrossRefGoogle ScholarPubMed
Callaghan, P. T., Principles of Nuclear Magnetic Resonance Microscopy. (Oxford: Clarendon Press, 1991).Google Scholar
Callaghan, P. T., Codd, S. L., and Seymour, J. D., Spatial Coherence Phenomena Arising from Translational Spin Motion in Gradient Spin Echo Experiments. Concepts Magn. Reson. 11 (1999), 181–202.3.0.CO;2-T>CrossRefGoogle Scholar
Caprihan, A. and Seymour, J. D., Correlation Time and Diffusion Coefficient Imaging: Application to a Granular Flow System. J. Magn. Reson. 144 (2000), 96–107.CrossRefGoogle ScholarPubMed
Callaghan, P. T. and Manz, B., Velocity Exchange Spectroscopy. J. Magn. Reson. A 106 (1994), 260–5.CrossRefGoogle Scholar
Silva, M. D., Helmer, K. G., Lee, J.-H., Han, S. S., and Springer, Jr. C. S., Deconvolution of Compartmental Water Diffusion Coefficients in Yeast-Cell Suspensions Using Combined total time for image acquisition1 and Diffusion Measurements. J. Magn. Reson. 156 (2002), 52–63.CrossRefGoogle Scholar
Britton, M. M., Graham, R. G., and Packer, K. J., Relationships Between Flow and NMR Relaxation of Fluids in Porous Solids. Magn. Reson. Imaging 19 (2001), 325–31.CrossRefGoogle ScholarPubMed
Hunter, M. W. and Callaghan, P. T., NMR Measurement of Nonlocal Dispersion in Complex Flows. Phys. Rev. Lett. 99 (2007), 210602-1–210602-4.CrossRefGoogle ScholarPubMed
Cheng, Y. and Cory, D. G., Multiple Scattering by NMR. J. Am. Chem. Soc. 121 (1999), 7935–6.CrossRefGoogle Scholar
Callaghan, P. T. and Komlosh, M. E., Locally Anisotropic Motion in a Macroscopically Isotropic System: Displacement Correlations Measured Using Double Pulsed Gradient Spin-Echo NMR. Magn. Reson. Chem. 40 (2002), S15–19.CrossRefGoogle Scholar
Chin, C.-L., Wehrli, F. W., Hwang, S. N., Jaggard, D. L., Hackney, D. B., and Wehrli, S. W., Feasibility of Probing Boundary Morphology of Structured Materials by 2D NMR q-Space Imaging. J. Magn. Reson. 160 (2003), 20–5.CrossRefGoogle ScholarPubMed
Packer, K. J., Stapf, S., Tessier, J. J., and Damion, R. A., The Characterisation of Fluid Transport in Porous Solids by Means of Pulsed Magnetic Field Gradient NMR. Magn. Reson. Imaging 16 (1998), 463–9.CrossRefGoogle ScholarPubMed
Stapf, S., Packer, K. J., Graham, R. G., Thovert, J.-F., and Adler, P. M., Spatial Correlations and Dispersion for Fluid Transport Through Packed Glass Beads Studied by Pulsed Field-Gradient NMR. Phys. Rev. E 58 (1998), 6206–21.CrossRefGoogle Scholar
Graham, R. G., Holmes, W. M., Panfilis, C., and Packer, K. J., Characterisation of Locally Anisotropic Structures Within Isotropic Porous Solids Using 2-D Pulsed Field Gradient NMR. Chem. Phys. Lett. 332 (2000), 319–23.CrossRefGoogle Scholar
Callaghan, P. T. and Furó, I., Diffusion-Diffusion Correlation and Exchange as a Signature for Local Order and Dynamics. J. Chem. Phys. 120 (2004), 4032–8.CrossRefGoogle ScholarPubMed
Qiao, Y., Galvosas, P., and Callaghan, P. T., Diffusion Correlation NMR Spectroscopic Study of Anisotropic Diffusion of Water in Plant Tissues. Biophys. J. 89 (2005), 2899–905.CrossRefGoogle ScholarPubMed
Callaghan, P. T., Godefroy, S., and Ryland, B. N., Diffusion–Relaxation Correlation in Simple Pore Structures. J. Magn. Reson. 162 (2003), 320–7.CrossRefGoogle ScholarPubMed
Hürlimann, M. D. and Venkataramanan, L., Quantitative Measurement of Two-Dimensional Distribution Functions of Diffusion and Relaxation in Grossly Inhomogeneous Fields. J. Magn. Reson. 157 (2002), 31–42.CrossRefGoogle ScholarPubMed
Marinelli, L., Hürlimann, M. D., and Sen, P. N., Modal Analysis of q-Space – Relaxation Correlation Experiments. J. Chem. Phys. 118 (2003), 8927–40.CrossRefGoogle Scholar
Brownstein, K. R. and Tarr, C. E., Importance of Classical Diffusion in NMR Studies of Water in Biological Cells. Phys. Rev. A 19 (1979), 2446–53.CrossRefGoogle Scholar
Sun, B. and Dunn, K.-J., Probing the Internal Field Gradients of Porous Media. Phys. Rev. E 65 (2002), 051309-1–051309-7.CrossRefGoogle ScholarPubMed
Seland, J. G., Washburn, K. E., Anthonsen, H. W., and Krane, J., Correlations Between Diffusion, Internal Magnetic Field Gradients, and Transverse Relaxation in Porous Systems Containing Oil and Water. Phys. Rev. E 70 (2004), 051305-1–051305-10.CrossRefGoogle ScholarPubMed
Khrapitchev, A. A. and Callaghan, P. T., Double PGSE NMR with Stimulated Echoes: Phase Cycles for the Selection of Desired Encoding. J. Magn. Reson. 152 (2001), 259–68.CrossRefGoogle Scholar
Callaghan, P. T., Some Perspectives on Dispersion and the Use of Ensemble-Averaged PGSE NMR. Magn. Reson. Imaging 23 (2005), 133–7.CrossRefGoogle ScholarPubMed
Callaghan, P. T. and Khrapitchev, A. A., Time-Dependent Velocities in Porous Media Dispersive Flow. Magn. Reson. Imaging 19 (2001), 301–5.CrossRefGoogle ScholarPubMed
Codd, S. L., Manz, B., Seymour, J. D., and Callaghan, P. T., Taylor Dispersion and Molecular Displacements in Poiseuille Flow. Phys. Rev. E 60 (1999), R3491–4.CrossRefGoogle ScholarPubMed
Callaghan, P. T. and Stepišnik, J., Generalized Analysis of Motion Using Magnetic Field Gradients. Adv. Magn. Opt. Reson. 19 (1996), 325–88.CrossRefGoogle Scholar
Khrapitchev, A. A., Stapf, S., and Callaghan, P. T., NMR Visualization of Displacement Correlations for Flow in Porous Media. Phys. Rev. E 66 (2002), 051203-1–051203-16.CrossRefGoogle ScholarPubMed
Caprihan, A. and Fukushima, E., Flow Measurements by NMR. Phys. Rep. 198 (1990), 195–235.CrossRefGoogle Scholar
Packer, K. J., Diffusion & Flow in Liquids. In Encyclopedia of Nuclear Magnetic Resonance, ed. Grant, D. M. and Harris, R. K.. vol. 3. (New York: Wiley, 1996), pp. 1615–26.Google Scholar
Fukushima, E., Nuclear Magnetic Resonance as a Tool to Study Flow. Annu. Rev. Fluid Mech. 31 (1999), 95–123.CrossRefGoogle Scholar
Newling, B., Gas Flow Measurements by NMR. Prog. NMR Spectrosc. 52 (2008), 31–48.CrossRefGoogle Scholar
Garroway, A. N., Velocity Measurements in Flowing Fluids by NMR. J. Phys. D. Appl. Phys. 7 (1974), L159–63.CrossRefGoogle Scholar
Guilfoyle, D. N., Mansfield, P., and Packer, K. J., Fluid Flow Measurement in Porous Media by Echo-Planar Imaging. J. Magn. Reson. 97 (1992), 342–58.Google Scholar
Holz, M., Müller, C., and Wachter, A. M., Modification of the Pulsed Magnetic Field Gradient Method for the Determination of Low Velocities by NMR. J. Magn. Reson. 69 (1986), 108–15.Google Scholar
Frydman, L., Harwood, J. S., Garnier, D. N., and Chingas, G. C., Position-Displacement Correlations in Fluids from Magnetic Resonance Gradient-Echo Shapes. J. Magn. Reson. A 101 (1993), 240–8.CrossRefGoogle Scholar
Cho, H., Ren, X.-H., Sigmund, E. E., and Song, Y.-Q., A Single-Scan Method for Measuring Flow Along an Arbitrary Direction. J. Magn. Reson. 186 (2007), 11–16.CrossRefGoogle ScholarPubMed
Raguin, L. G. and Ciobanu, L., Multiple Echo NMR Velocimetry: Fast and Localized Measurements of Steady and Pulsatile Flows in Small Channels. J. Magn. Reson. 184 (2007), 337–43.CrossRefGoogle ScholarPubMed
Packer, K. J., Rees, C., and Tomlinson, D. J., Studies of Diffusion and Flow by Pulsed NMR Techniques. Adv. Mol. Relax. Process. 3 (1972), 119–31.CrossRefGoogle Scholar
Holz, M. and Müller, C., Direct Measurement of Single Ionic Drift Velocities in Electrolyte Solutions. An NMR Method. Ber. Bunsenges. Phys. Chem. 86 (1982), 141–7.CrossRefGoogle Scholar
Holz, M., NMR in the Presence of an Electric Current. Simultaneous Measurements of Ionic Mobilities, Transference Numbers, and Self-Diffusion Coefficients using an NMR Pulsed-Gradient Experiment. J. Magn. Reson. 58 (1984), 294–305.Google Scholar
Saarinen, T. R. and Johnson, Jr. C. S., High-Resolution Electrophoretic NMR. J. Am. Chem. Soc. 110 (1988), 3332–3.CrossRefGoogle Scholar
Morris, K. F. and Johnson, Jr. C. S., Mobility-Ordered Two-Dimensional Nuclear Magnetic Resonance Spectroscopy. J. Am. Chem. Soc. 114 (1992), 776–7.CrossRefGoogle Scholar
Johnson, Jr. C. S. and He, Q., Electrophoretic Nuclear Magnetic Resonance. Adv. Magn. Reson. 13 (1989), 131–59.CrossRefGoogle Scholar
Holz, M., Electrophoretic NMR. Chem. Soc. Rev. 23 (1994), 165–74.CrossRefGoogle Scholar
Johnson, Jr. C. S., Electrophoretic NMR. In Encyclopedia of Nuclear Magnetic Resonance, ed. Grant, D. M. and Harris, R. K.. vol. 3. (New York: Wiley, 1996), pp. 1886–95.Google Scholar
Holz, M., Field-Assisted Diffusion Studied by Electrophoretic NMR. In Diffusion in Condensed Matter, ed. Kärger, J. and Heitjans, P.. (Berlin: Springer, 2005), pp. 717–42.CrossRefGoogle Scholar
Griffiths, P. C., Paul, A., and Hirst, N., Electrophoretic NMR Studies of Polymer and Surfactant Systems. Chem. Soc. Rev. 35 (2006), 134–45.CrossRefGoogle ScholarPubMed
Cantor, C. R. and Schimmel, P. R., Biophysical Chemistry, Part II: Techniques for the Study of Biological Structure and Function. (New York: W.H. Freeman, 1980), pp. 555–6.Google Scholar
Hayamizu, K., Seki, S., Miyashiro, H., and Kobayashi, Yo., Direct in Situ Observation of Dynamic Transport for Electrolyte Components by NMR Combined with Electrochemical Measurements. J. Phys. Chem. B 110 (2006), 22302–5.CrossRefGoogle ScholarPubMed
He, Q., Lin, W., Liu, Y., and Li, E., Three-Dimensional Electrophoretic NMR Correlation Spectroscopy. J. Magn. Reson. 147 (2000), 361–5.CrossRefGoogle ScholarPubMed
Pettersson, E., Furó, I., and Stilbs, P., On Experimental Aspects of Electrophoretic NMR. Concepts Magn. Reson. 22A (2004), 61–8.CrossRefGoogle Scholar
Hallberg, F., Furó, I., Yushmanov, P. V., and Stilbs, P., Sensitive and Robust Electrophoretic NMR. Instrumentation and Experiments, J. Magn. Reson. 192 (2008), 69–77.CrossRefGoogle ScholarPubMed
He, Q. and Wei, Z., Convection Compensated Electrophoretic NMR. J. Magn. Reson. 150 (2001), 126–31.CrossRefGoogle ScholarPubMed
Heil, S. R. and Holz, M., A Mobility Filter for the Detection and Identification of Charged Species in Complex Liquid Mixtures by ENMR Phase Difference Spectroscopy. Angew. Chem. (Int. Ed. Engl.) 35 (1996), 1717–20.CrossRefGoogle Scholar
He, Q. and Johnson, Jr. C. S., Two-Dimensional Electrophoretic NMR for the Measurement of Mobilities and Diffusion in Mixtures. J. Magn. Reson. 81 (1989), 435–9.Google Scholar
He, Q. and Johnson, Jr. C. S., Stimulated Echo Electrophoretic NMR. J. Magn. Reson. 85 (1989), 181–5.Google Scholar
He, Q., Hinton, D. P., and Johnson, Jr. C. S., Measurement of Mobility Distributions for Vesicles by Electrophoretic NMR. J. Magn. Reson. 91 (1991), 654–8.Google Scholar
Morris, K. F. and Johnson, Jr. C. S., Mobility-Ordered 2D NMR Spectroscopy for the Analysis of Ionic Mixtures. J. Magn. Reson. A 101 (1993), 67–73.CrossRefGoogle Scholar
Li, E. and He, Q., Constant-Time Multidimensional Electrophoretic NMR. J. Magn. Reson. 156 (2002), 181–6.CrossRefGoogle ScholarPubMed
Thakur, S. B. and He, Q., High Flow-Resolution for Mobility Estimation in 2D-ENMR of Proteins Using Maximum Entropy Method (MEM-ENMR). J. Magn. Reson. 183 (2006), 32–40.CrossRefGoogle Scholar
Körber, H., Dormann, E., and Eska, G., Multiple Spin Echoes for Protons in Water. J. Magn. Reson. 93 (1991), 589–95.Google Scholar
Bowtell, R. and Robyr, P., Structural Investigations with the Dipolar Demagnetizing Field in Solution NMR. Phys. Rev. Lett. 76 (1996), 4971–4.CrossRefGoogle ScholarPubMed
Robyr, P. and Bowtell, R., Measuring Diffusion in Liquids with a Single Gradient Pulse. J. Magn. Reson. A 121 (1996), 206–8.CrossRefGoogle Scholar
Ruf, R. and Dormann, E., How to Measure Diffusion Constant and Absolute Susceptibility of Charge Carriers at the Same Time. Z. Phys. B 102 (1997), 157–61.CrossRefGoogle Scholar
Bifone, A., Payne, G. S., and Leach, M. O., In Vivo Multiple Spin Echoes. J. Magn. Reson. 135 (1998), 30–6.CrossRefGoogle ScholarPubMed
Ardelean, I. and Kimmich, R., Diffusion Measurements Using Nonlinear Stimulated Echo. J. Magn. Reson. 143 (2000), 101–5.CrossRefGoogle ScholarPubMed
Jeener, J., Macroscopic Molecular Diffusion in Liquid NMR, Revisited. Concepts Magn. Reson. 14 (2002), 79–88.CrossRefGoogle Scholar
Ardelean, I. and Kimmich, R., Principles and Unconventional Aspects of NMR Diffusometry. In Annual Reports on NMR Spectroscopy. ed. Webb, G. A.. vol. 49 (London: Elsevier, 2003), pp. 43–115.Google Scholar
Cai, C., Chen, Z., Cai, S., and Zhong, J., Propagator Formalism and Computer Simulation of Restricted Diffusion Behaviors of Inter-Molecular Multiple-Quantum Coherences. Physica B 366 (2005), 127–37.CrossRefGoogle Scholar
Barros, Jr. W. and Gochberg, D. F., Fast Single-Gradient Simultaneous Measurement of self-diffusion coefficient and total time for image acquisition2 in Liquids via the Distant Dipolar Field. Chem. Phys. Lett. 431 (2006), 174–8.CrossRefGoogle Scholar
Barros, Jr. W., Gore, J. C., and Gochberg, D. F., Simultaneous Measurement of self-diffusion coefficient and total time for image acquisition2 Using the Distant Dipolar Field. J. Magn. Reson. 178 (2006), 166–9.CrossRefGoogle Scholar
Viel, S., Ziarelli, F., Pagès, G., Carrara, C., and Caldarelli, S., Pulsed Field Gradient Magic Angle Spinning NMR Self-Diffusion Measurements in Liquids. J. Magn. Reson. 190 (2008), 113–23.CrossRefGoogle ScholarPubMed
Carl, M., Miller, G. W., Mugler, J. P. III, Rohrbaugh, S., Tobias, W. A., and Cates, Jr. G. D., Measurement of Hyperpolarized Gas Diffusion at Very Short Time Scales. J. Magn. Reson. 189 (2007), 228–40.CrossRefGoogle ScholarPubMed
Zänker, P., Schmidt, J., Schmiedeskamp, J., Acosta, R. H. and Spiess, H. W., Spin Echo Formation in the Presence of Stochastic Dynamics. Phys. Rev. Lett. 99 (2007), 263001-1–263001-4.CrossRefGoogle ScholarPubMed
Casieri, C., Bubici, S., and Luca, F., Self-Diffusion Coefficient by Single-Sided NMR. J. Magn. Reson. 162 (2003), 348–55.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×