Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-14T19:55:57.671Z Has data issue: false hasContentIssue false

Tensor and homotopy criteria for functional equations of ℓ-adic and classical iterated integrals

Published online by Cambridge University Press:  05 January 2012

Hiroaki Nakamura
Affiliation:
Okayama University
Zdzisław Wojtkowiak
Affiliation:
Université de Nice-Sophia Antipolis
John Coates
Affiliation:
University of Cambridge
Minhyong Kim
Affiliation:
University College London
Florian Pop
Affiliation:
University of Pennsylvania
Mohamed Saïdi
Affiliation:
University of Exeter
Peter Schneider
Affiliation:
Universität Münster
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[BD] A., Beilinso, P., Deligne, Interprétation motivique de la conjecture de Zagier reliant polylogarithms et régulateurs, Proc. Symp. in Pure Math. (AMS) 55-2 (1994), 97–121.Google Scholar
[Bl1] S., Bloch, Applications of the dilogarithm function in algebraic K-theory and algebraic geometry, Proc. Int. Symp. Alg. Geom., Kyoto, (1977), 1–14.Google Scholar
[Bl2] S., Bloch, Function Theory of Polylogarithms, in “Structural Properties of Polylogarithms”, L., Lewin (ed.), Mathematical Surveys and Monographs (AMS), 37 (1991), 275–285.Google Scholar
[B-1] N., Bourbaki, ÉlÉments de MathÉmatique, AlgÉbre, Hermann, Paris 1962.Google Scholar
[B-2] N., Bourbaki, ÉlÉments de MathÉmatique, AlgÉbre Commutative, Hermann, Paris 1961.Google Scholar
[De0] P., Deligne, letter to Grothendieck, November 19, 1982.
[De1] P., Deligne, Théorie de Hodge, II, Publ. I.H.E.S., 40 (1971), 5–58.Google Scholar
[De2] P., Deligne, Le Groupe Fondamental de la Droite Projective Moins Trois Points, in “Galois group over ℚ” (Y., Ihara, K., Ribet, J.-P., Serre eds.), MSRI Publ. Vol. 16 (1989), 79–297.Google Scholar
[Dr] V. G., Drinfeld, On quasitriangular quasi-Hoph algebras and a group closely connected with Gal(ℚ/ℚ), Algebra i Analiz 2 (1990), 149–181; English translation: Leningrad Math. J. 2 (1991), 829–860.Google Scholar
[DW1] J.-C., Douai, Z., Wojtkowiak, On the Galois actions on the fundamental group of, Tokyo Journal of Math., 27 (2004), 21–34.Google Scholar
[DW2] J.-C., Douai, Z., Wojtkowiak, Descent for l-adic polylogarithms, Nagoya Math. J., 192 (2008), 59–88.Google Scholar
[F] H., Furusho, The multiple zeta value algebra and the stable derivation algebra, Publ. RIMS, Kyoto Univ. 39 (2003), 695–720.Google Scholar
[Ga] H., Gangl, Families of Functional Equations for Polylogarithms, Comtemp. Math. (AMS) 199 (1996), 83–105.Google Scholar
[Gol] K., Goldberg, The formal power series for Logexey, Duke Math. J., 23 (1956), 13–21.Google Scholar
[Gon] A. B., Goncharov, Galois symmetries of fundamental groupoids and noncommutative geometry, Duke Math. J., 128 (2005), 209–284.Google Scholar
[H] R., Hain, On a generalization of Hilbert's 21st problem, Ann. Scient. Éc. Norm. Sup., 19 (1986), 609–627.Google Scholar
[HM] R., Hain, M., Matsumoto, Weighted completion of Galois groups and Galois actions on the fundamental group of ℙ1 - {0, 1, ∞}, Compositio Math. 139 (2003), 119–167.Google Scholar
[Ih1] Y., Ihara, Braids, Galois groups, and some arithmetic functions, Proc. Intern. Congress of Math.Kyoto 1990, 99–120.Google Scholar
[Ih2] Y., Ihara, Some arithmetic aspects of Galois actions in the pro-p fundamental group of ℙ1 - {0, 1, ∞}, Proc. Symp. Pure Math. (AMS) 70 (2002) 247–273.Google Scholar
[Ii] S., Iitaka, Algebraic Geometry, Springer GTM 76 1982.Google Scholar
[K] V., Kurlin, The Baker–Campbell–Hausdorff formula in the free meta-abelian Lie algebra, J. of Lie Theory, 17 (2007), 525–538.Google Scholar
[La1] S., Lang, Fundamentals of Diophantine Geometry, Springer 1983.Google Scholar
[La2] S., Lang, Cyclotomic Fields I and II, GTM 121, Springer 1990.Google Scholar
[Le] L., Lewin, Polylogarithms and associated functions, North Holland, 1981.Google Scholar
[LS] P., Lochak, L., Schneps, A cohomological interpretation of the Grothendieck-Teichmüller group, Invent. math. 127 (1997), 571–600.Google Scholar
[MKS] W., Magnus, A., Karrass, D., Solitar, Combinatorial Group Theory, Second Revised Edition, Dover 1976.Google Scholar
[MS] W. G., McCallum and R. T., Sharifi, A cup product in the Galois cohomology of number fields, Duke Math. J., 120 (2003), 269–310.Google Scholar
[N0] H., Nakamura, Tangential base points and Eisenstein power series, in “Aspects of Galois Theory” (H., Völklein et.al. eds.), London Math. Soc. Lect. Note Ser., 256 (1999), 202–217.Google Scholar
[N1] H., Nakamura, Galois rigidity of pure sphere braid groups and profinite calculus, J. Math. Sci.Univ. Tokyo 1 (1994), 71–136.Google Scholar
[N2] H., Nakamura, Limits of Galois representations in fundamental groups along maximal degeneration of marked curves, I, Amer. J. Math. 121 (1999) 315–358; Part II, Proc. Symp. Pure Math. 70 (2002) 43–78.Google Scholar
[NW] H., Nakamura, Z., Wojtkowiak, On explicit formulae for l-adic polylogarithms, Proc. Symp. Pure Math. (AMS) 70 (2002) 285–294.Google Scholar
[NW2] H., Nakamura, Z., Wojtkowiak, in preparation.
[Ra] M., Raynaud, Propriétés de finitude du groupe fondamental, SGA7, Exposé II, Lect. Notes in Math.Springer, 288 (1972), 25–31.Google Scholar
[Rob] A., Robert, Elliptic Curves, Lect. Notes in Math. 326, Springer.
[Roq] P., Roquette, Einheiten und Divisorkalssen in endlich erzeugbaren Körpern, J. d. Deutschen Math. – Vereinigung, 60 (1957), 1–21.Google Scholar
[S1] Ch., Soulé, On higher p-adic regulators, Springer Lecture Notes in Math., 854 (1981), 372–401.Google Scholar
[S2] Ch., Soulé, Élements Cyclotomiques en K-ThÉorie, Ast'erisque, 147/148 (1987), 225–258.Google Scholar
[W0] Z., Wojtkowiak, The basic structure of polylogarithmic functional equations, in “Structural Properties of Polylogarithms”, L., Lewin (ed.), Mathematical Surveys and Monographs (AMS), 37 (1991), 205–231.Google Scholar
[W1] Z., Wojtkowiak, A note on functional equations of the p-adic polylogarithms, Bull. Soc. math. France, 119 (1991), 343–370.Google Scholar
[W2] Z., Wojtkowiak, Functional equations of iterated integrals with regular singularities, Nagoya Math. J., 142 (1996), 145–159.Google Scholar
[W3] Z., Wojtkowiak, Monodromy of iterated integrals and non-abelian unipotent periods, in “Geometric Galois Actions II”, London Math. Soc. Lect. Note Ser. 243 (1997) 219–289.Google Scholar
[W4] Z., Wojtkowiak, On ℓ-adic iterated integrals, I – Analog of Zagier Conjecture, Nagoya Math. J., 176 (2004), 113–158.Google Scholar
[W5] Z., Wojtkowiak, On ℓ-adic iterated integrals, II – Functional equations and ℓ-adic polylogarithms, Nagoya Math. J., 177 (2005), 117–153.Google Scholar
[W6] Z., Wojtkowiak, On ℓ-adic iterated integrals, III – Galois actions on fundamental groups, Nagoya Math. J., 178 (2005), 1–36.Google Scholar
[W7] Z., Wojtkowiak, On ℓ-adic iterated integrals, IV – ramification and generators of Galois actions on fundamental groups and torsors of paths, Math. J. Okayama Univ., 51 (2009), 47–69.Google Scholar
[W8] Z., Wojtkowiak, On the Galois actions on torsors of paths, I – Descent of Galois representations, J. Math. Univ. Tokyo., 14 (2007), 177–259.Google Scholar
[W9] Z., Wojtkowiak, A note on functional equations of ℓ-adic polylogarithms, J. Inst. Math. Jussieu, 3 (2004), 461–471.Google Scholar
[W10] Z., Wojtkowiak, On ℓadic Galois periods, relations between coefficients of Galois representations on fundamental groups of a projective line minus a finite number of points, Algèbre et théorie des nombres. Années 20072009, Proceedings of the Conference “l-adic Cohomology and Number Theory” held at Luminy, Marseille, (December 10–14, 2007), Publ. Math. Univ.Franche-Comté Besançon Algèbr. Theor. Nr., Lab. Math. Besançon, Besançon, 2009, pp. 157–174. (available at URL: http://www-math.univ-fcomte.fr/pp Equipe/AlgebreTheorieDesNombres/pmb.html)Google Scholar
[Z] D., Zagier, Polylogarithms, Dedekind zeta functions and the algebraic Ktheory of Fields, in “Arithmetic Algebraic Geometry”, G., van der Geer et al.(eds.), Progress in Math., Birkhäuser, 89 (1991), 391–430.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×