Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-28T02:44:57.739Z Has data issue: false hasContentIssue false
This chapter is part of a book that is no longer available to purchase from Cambridge Core

8 - Dissipation and noise in mean field dynamics

from III - GAUGE INVARIANCE, DISSIPATION, ENTROPY, NOISE AND DECOHERENCE

Esteban A. Calzetta
Affiliation:
Universidad de Buenos Aires, Argentina
Bei-Lok B. Hu
Affiliation:
University of Maryland, College Park
Get access

Summary

In Chapter 6 we presented the main computational schemes to derive the dynamical laws for the mean field, including the back-reaction from quantum fluctuations. These equations may be derived from the variation of the CTPEA. The result of this approach is a semiclassical theory of a c-number condensate interacting with a quantized fluctuation field.

This approach developed at this level of sophistication is limited as it offers no description of the fluctuations themselves. In most applications the magnitude of the fluctuations can be comparable and at times dominates the effects of the mean field in the semiclassical description. One possible way to incorporate fluctuations is to use the 2PI formalism, where the propagators describing the fluctuations are considered as dynamical variables evolving along with the mean fields.

In this chapter we shall explore a different strategy, which is to allow for a stochastic component in the mean field. This component arises from both the uncertainty of the initial configuration of the mean field, and from the fluctuations in the back-reaction from the quantized excitations. Both sources of randomness combine so that stochastic averages in the noisy theory reproduce suitable quantum averages in the underlying quantum field theory.

Formally, this approach lifts the seemingly overladen CTPEA. So far in this generally complex object, only the real part is enlisted in the derivation of the relevant equations of motion of the mean field.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×