Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T23:34:22.928Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  18 December 2014

Piet Groeneboom
Affiliation:
Technische Universiteit Delft, The Netherlands
Geurt Jongbloed
Affiliation:
Technische Universiteit Delft, The Netherlands
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Nonparametric Estimation under Shape Constraints
Estimators, Algorithms and Asymptotics
, pp. 401 - 408
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albers, M.G. 2012. Boundary Estimation of Densities with Bounded Support. Master's thesis. ETH Zürich.Google Scholar
Andersen, P.K., and Rønn, B.B. 1995. Anonparametric test for comparing two samples where all observations are either left- or right-censored. Biometrics, 51, 323–329.CrossRefGoogle ScholarPubMed
Andersen, P.K., Borgan, O., Gill, R.D., and Keiding, N. 1993. Statistical models based on counting processes. New York: Springer.CrossRefGoogle Scholar
Anevski, D. 2003. Estimating the derivative of a convex density. Statistica neerlandica, 57(2), 245–257.CrossRefGoogle Scholar
Anevski, D. 2007. Interarrival times in a counting process and bird watching. Statistica Neerlandica, 61, 198–208.CrossRefGoogle Scholar
Ayer, M., Brunk, H.D., Ewing, G.M., Reid, W.T., and Silverman, E. 1955. An empirical distribution function for sampling with incomplete information. Ann. Math. Statist., 26, 641–647.CrossRefGoogle Scholar
Balabdaoui, F., and Wellner, J.A. 2007. Estimation of a k-monotone density: limit distribution theory and the spline connection. Ann. Statist., 35, 2536–2564.CrossRefGoogle Scholar
Balabdaoui, F., Rufibach, K., and Wellner, J.A. 2009. Limit distribution theory for maximum likelihood estimation of a log-concave density. Ann. Statist., 37, 1299–1331.CrossRefGoogle ScholarPubMed
Ball, K., and Pajor, A. 1990. The entropy of convex bodies with “few” extreme points. Pages 25–32 of: Geometry of Banach spaces (Strobl, 1989). London Math. Soc. Lecture Note Ser., vol. 158. Cambridge: Cambridge Univ. Press.Google Scholar
Banerjee, M., and Wellner, J.A. 2001. Likelihood ratio tests for monotone functions. Ann. Statist., 29, 1699–1731.Google Scholar
Banerjee, M., and Wellner, J.A. 2005. Confidence intervals for current status data. Scand. J. Statist., 32, 405–424.CrossRefGoogle Scholar
Barlow, R.E., Bartholomew, D.J., Bremner, J.M., and Brunk, H.D. 1972. Statistical inference under order restrictions. The theory and application of isotonic regression. John Wiley & Sons, London–New York–Sydney. Wiley Series in Probability and Mathematical Statistics.Google Scholar
Bazaraa, M.S., Sherali, H.D., and Shetty, C.M. 2006. Nonlinear programming. Third ed. Hoboken, NJ: Wiley-Interscience [John Wiley & Sons]. Theory and algorithms.CrossRefGoogle Scholar
Bennett, C., and Sharpley, R.C. 1988. Interpolation of operators. Vol. 129. Access Online via Elsevier.Google Scholar
Betensky, R.A., and Finkelstein, D.M. 1999. A non-parametric maximum likelihood estimator for bivariate interval censored data. Statist. Med., 18, 3089–3100.3.0.CO;2-0>CrossRefGoogle ScholarPubMed
Bickel, P.J., Klaassen, C.A.J., Ritov, Y., and Wellner, J.A. 1998. Efficient and adaptive estimation for semiparametric models. New York: Springer-Verlag. Reprint of the 1993 original.Google Scholar
Billingsley, P. 1995. Probability and measure. Third ed. Wiley Series in Probability and Mathematical Statistics. New York: John Wiley & Sons. A Wiley-Interscience Publication.Google Scholar
Birgé, L. 1999. Interval censoring: a nonasymptotic point of view. Math. Methods Statist., 8, 285–298.Google Scholar
Birke, M., and Dette, H. 2007. Testing strict monotonicity in nonparametric regression. Math. Methods Statist., 16, 110–123.CrossRefGoogle Scholar
Birman, M.Š., and Solomjak, M.Z. 1967. Piecewise polynomial approximations of functions of classesWpα. Mat. Sb. (N.S.), 73(115), 331–355.Google Scholar
Bogaerts, K., and Lesaffre, E. 2004. A new, fast algorithm to find the regions of possible support for bivariate interval-censored data. J. Comput. Graph. Statist., 13, 330–340.CrossRefGoogle Scholar
Böhning, D. 1982. Convergence of Simar's algorithm for finding the maximum likelihood estimate of a compound Poisson process. Ann. Statist., 10, 1006–1008.CrossRefGoogle Scholar
Böhning, D. 1986. A vertex-exchange-method in D-optimal design theory. Metrika, 33, 337–347.CrossRefGoogle Scholar
Carolan, C.A., and Dykstra, R.L. 1999. Asymptotic behavior of the grenander estimator at density flat regions. Canad. J. Statist., 27, pp. 557–566.CrossRefGoogle Scholar
Chernoff, H. 1964. Estimation of the mode. Ann. Inst. Statist. Math., 16, 31–41.CrossRefGoogle Scholar
Cule, M., Gramacy, R., and Samworth, R.J. 2009. LogConcDEAD: an R package for maximum likelihood estimation of a multivariate log-concave density. Journal of Statistical Software, 29(2).CrossRefGoogle Scholar
Cule, M., and Samworth, R.J. 2010. Theoretical properties of the log-concave maximum likelihood estimator of a multidimensional density. Electron. J. Stat., 4, 254–270.CrossRefGoogle Scholar
Cule, M., Samworth, R.J., and Stewart, M.I. 2010. Maximum likelihood estimation of a multi-dimensional log-concave density. J. Roy. Statist. Soc. Ser. B (Statistical Methodology), 72(5), 545–607.CrossRefGoogle Scholar
Dabrowska, D.M. 1988. Kaplan-Meier estimate on the plane. Ann. Statist., 16, 1475–1489.CrossRefGoogle Scholar
Daniels, H.E., and Skyrme, T.H.R. 1985. The maximum of a random walk whose mean path has a maximum. Adv. in Appl. Probab., 17, 85–99.CrossRefGoogle Scholar
Dempster, A.P., Laird, N.M., and Rubin, D.B. 1977. Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Statist. Soc. Ser. B, 39, 1–38. With discussion.Google Scholar
Dette, H., Neumeyer, N., and Pilz, K.F. 2006. A simple nonparametric estimator of a strictly monotone regression function. Bernoulli, 12, 469–490.CrossRefGoogle Scholar
Dietz, K., and Schenzle, D. 1985. Proportionate mixing models for age-dependent infection transmission. J. Math. Biol., 22, 117–120.CrossRefGoogle ScholarPubMed
Donoho, D.L., and Liu, R.C. 1991. Geometrizing rates of convergence. II, III. Ann. Statist., 19, 633–667, 668–701.Google Scholar
Dümbgen, L., and Rufibach, K. 2009. Maximum likelihood estimation of a log-concave density and its distribution function: basic properties and uniform consistency. Bernoulli, 15, 40–68.CrossRefGoogle Scholar
Dümbgen, L., and Rufibach, K. 2011. logcondens: computations related to univariate log-concave density estimation. Journal of Statistical Software, 39, 1–28.CrossRefGoogle Scholar
Durot, C. 2007. On the Lp-error of monotonicity constrained estimators. Ann. Statist., 35, 1080–1104.CrossRefGoogle Scholar
Durot, C. 2008. Testing convexity or concavity of a cumulated hazard rate. IEEE Trans. on Rel., 57, 465–473.CrossRefGoogle Scholar
Durot, C., Kulikov, V.N., and Lopuhaä, H.P. 2012. The limit distribution of the L∞-error of Grenander-type estimators. Ann. Statist., 40(3), 1578–1608.CrossRefGoogle Scholar
Durot, C., Groeneboom, P., and Lopuhaä, H.P. 2013. Testing equality of functions under monotonicity constraints. J. Nonparametr. Stat., 25, 939–970.CrossRefGoogle Scholar
Eggermont, P.P.B., and LaRiccia, V.N. 2000. Maximum likelihood estimation of smooth monotone and unimodal densities. Annals of statistics, 922–947.Google Scholar
Eggermont, P.P.B., and LaRiccia, VN. 2001a. Maximum penalized likelihood estimation: density estimation. Vol. 1. New York: Springer.Google Scholar
Eggermont, P.P.B., and LaRiccia, V.N. 2001b. Maximum penalized likelihood estimation: regression. Vol. 2. New York: Springer.Google Scholar
Fan, J. 1993. Local linear regression smoothers and their minimax efficiencies. Ann. Statist., 21, 196–216.CrossRefGoogle Scholar
Fedorov, V.V. 1971. Experimental design under linear optimality criteria. Teor. Verojatnost. i Primenen., 16, 189–195.Google Scholar
Feuerverger, A., and Hall, P. 2000. Methods for density estimation in thick-slice versions of Wicksell's problem. J. Amer. Statist. Assoc., 95(450), 535–546.CrossRefGoogle Scholar
Feuerverger, A., Kim, P.T., and Sun, J. 2008. On optimal uniform deconvolution. J. Stat. Theory Pract., 2, 433–451.CrossRefGoogle Scholar
Fleming, T.R., and Harrington, D.P. 2011. Counting processes and survival analysis. Wiley.Google Scholar
Fougères, A.-L. 1997. Estimation de densites unimodales. Canadian Journal of Statistics, 25(3), 375–387.CrossRefGoogle Scholar
Gentleman, R., and Vandal, A.C. 2002. Nonparametric estimation of the bivariate CDF for arbitrarily censored data. Canad. J. Statist., 30, 557–571.CrossRefGoogle Scholar
Geskus, R.B. 1997. Estimation of Smooth Functionals with Interval Censored Data. Ph.D. thesis. Delft University of Technology.Google Scholar
Geskus, R.B., and Groeneboom, P. 1996. Asymptotically optimal estimation of smooth functionals for interval censoring. I. Statist. Neerlandica, 50, 69–88.CrossRefGoogle Scholar
Geskus, R.B., and Groeneboom, P. 1997. Asymptotically optimal estimation of smooth functionals for interval censoring. II. Statist. Neerlandica, 51, 201–219.CrossRefGoogle Scholar
Geskus, R.B., and Groeneboom, P. 1999. Asymptotically optimal estimation of smooth functionals for interval censoring, case 2. Ann. Statist., 27, 627–674.Google Scholar
Gijbels, I., and Heckman, N.E. 2004. Nonparametric testing for a monotone hazard function via normalized spacings. J. Nonparametr. Stat., 16, 463–477.CrossRefGoogle Scholar
Gill, R.D., and Levit, B.Y. 1995. Applications of the Van Trees inequality: a Bayesian Cramér-Rao bound. Bernoulli, 1, 59–79.CrossRefGoogle Scholar
Giné, E., and Guillou, A. 2002. Rates of strong uniform consistency for multivariate kernel density estima-tors. Ann. Inst. H. Poincare Probab. Statist., 38, 907–921. En l'honneur de J. Bretagnolle, D. Dacunha-Castelle, I. Ibragimov.CrossRefGoogle Scholar
Good, I.J., and Gaskins, R.A. 1971. Nonparametric roughness penalties for probability densities. Biometrika, 58, 255–277.CrossRefGoogle Scholar
Grenander, U. 1956. On the theory of mortality measurement. II. Skand. Aktuarietidskr., 39, 125–153 (1957).Google Scholar
Groeneboom, P. 1983. The concave majorant of Brownian motion. Ann. Probab., 11, 1016–1027.CrossRefGoogle Scholar
Groeneboom, P. 1985. Estimating a monotone density. Pages 539–555 of: Proceedings of the Berkeley conference in honor of Jerzy Neyman and Jack Kiefer, Vol. II (Berkeley, Calif., 1981). Wadsworth Statist./Probab. Ser. Belmont, CA: Wadsworth.Google Scholar
Groeneboom, P. 1989. Brownian motion with a parabolic drift and Airy functions. Probab. Theory Related Fields, 81, 79–109.CrossRefGoogle Scholar
Groeneboom, P. 1996. Lectures on inverse problems. Pages 67–164 of: Lectures on probability theory and statistics (Saint-Flour, 1994). Lecture Notes in Math., vol. 1648. Berlin: Springer.Google Scholar
Groeneboom, P. 2010. The maximum of Brownian motion minus a parabola. Electron. J. Probab., 15, no. 62, 1930–1937.CrossRefGoogle Scholar
Groeneboom, P. 2011. Vertices of the least concave majorant of Brownian motion with parabolic drift. Electron. J. Probab., 16, no. 84, 2234–2258.CrossRefGoogle Scholar
Groeneboom, P. 2012a. Convex hulls of uniform samples from a convex polygon. Adv. in Appl. Probab., 44, 330–342.CrossRefGoogle Scholar
Groeneboom, P. 2012b. Likelihood ratio type two-sample tests for current status data. Scand. J. Statist., 39, 645–662.CrossRefGoogle Scholar
Groeneboom, P. 2013a. The bivariate current status model. Electron. J. Stat., 7, 1797–1845.CrossRefGoogle Scholar
Groeneboom, P. 2013b. Nonparametric (smoothed) likelihood and integral equations. J. Statist. Plann. Inference, 143, 2039–2065.CrossRefGoogle Scholar
Groeneboom, P. 2014. Maximum smoothed likelihood estimators for the interval censoring model. Ann. Statist., 42, 2092–2137.CrossRefGoogle Scholar
Groeneboom, P., and Jongbloed, G. 2003. Density estimation in the uniform deconvolution model. Statist. Neerlandica, 57, 136–157.CrossRefGoogle Scholar
Groeneboom, P., and Jongbloed, G. 2012. Isotonic L2-projection test for local monotonicity of a hazard. J. Statist. Plann. Inference, 142, 1644–1658.CrossRefGoogle Scholar
Groeneboom, P., and Jongbloed, G. 2013a. Smooth and non-smooth estimates of a monotone hazard. Volume in the IMS Lecture Notes Monograph Series in honor of the 65th birthday of Jon Wellner. IMS.
Groeneboom, P., and Jongbloed, G. 2013b. Smooth and non-smooth estimates of a monotone hazard. Pages 174–196 of: From Probability to Statistics and Back: High-Dimensional Models and Processes–A Festschrift in Honor of Jon A. Wellner. Institute of Mathematical Statistics.Google Scholar
Groeneboom, P., and Jongbloed, G. 2013c. Testing monotonicity of a hazard: asymptotic distribution theory. Bernoulli, 19, 1965–1999.CrossRefGoogle Scholar
Groeneboom, P., and Jongbloed, G. 2014. Nonparametric confidence intervals for monotone functions. http://arxiv.org/abs/1407.3491.
Groeneboom, P., and Ketelaars, T. 2011. Estimators for the interval censoring problem. Electron. J. Stat., 5, 1797–1845.CrossRefGoogle Scholar
Groeneboom, P., and Lopuhaä, H.P. 1993. Isotonic estimators of monotone densities and distribution func-tions: basic facts. Statist. Neerlandica, 47, 175–183.CrossRefGoogle Scholar
Groeneboom, P., and Pyke, R. 1983. Asymptotic normality of statistics based on the convex minorants of empirical distribution functions. Ann. Probab., 11, 328–345.CrossRefGoogle Scholar
Groeneboom, P., and Temme, N.M. 2011. The tail of the maximum of Brownian motion minus a parabola. Electron. Commun. Probab., 16, 458–466.CrossRefGoogle Scholar
Groeneboom, P., and Wellner, J.A. 1992. Information bounds and nonparametric maximum likelihood estimation. DMV Seminar, vol. 19. Basel: Birkhauser Verlag.CrossRefGoogle Scholar
Groeneboom, P., and Wellner, J.A. 2001. Computing Chernoff's distribution. J. Comput. Graph. Statist., 10, 388–400.CrossRefGoogle Scholar
Groeneboom, P., Hooghiemstra, G., and Lopuhaä, H.P. 1999. Asymptotic normality of the L1 error of the Grenander estimator. Ann. Statist., 27, 1316–1347.Google Scholar
Groeneboom, P., Jongbloed, G., and Wellner, J.A. 2001a. Estimation of a convex function: characterizations and asymptotic theory. Ann. Statist., 29, 1653–1698.Google Scholar
Groeneboom, P., Jongbloed, G., and Wellner, J.A. 2001b. A canonical process for estimation of convex functions: the “invelope” of integrated Brownian motion +t4. Ann. Statist., 29, 1620–1652.Google Scholar
Groeneboom, P., Jongbloed, G., and Wellner, J.A. 2008. The support reduction algorithm for computing non-parametric function estimates in mixture models. Scand. J. Statist., 35, 385–399.CrossRefGoogle ScholarPubMed
Groeneboom, P., Maathuis, M.H., and Wellner, J.A. 2008a. Current status data with competing risks: consistency and rates of convergence of the MLE. Ann. Statist., 36, 1031–1063.Google Scholar
Groeneboom, P., Maathuis, M.H., and Wellner, J.A. 2008b. Current status data with competing risks: limiting distribution of the MLE. Ann. Statist., 36, 1064–1089.Google ScholarPubMed
Groeneboom, P., Jongbloed, G., and Witte, B.I. 2010. Maximum smoothed likelihood estimation and smoothed maximum likelihood estimation in the current status model. Ann. Statist., 38, 352–387.CrossRefGoogle Scholar
Groeneboom, P., Jongbloed, G., and Michael, S. 2012. Consistency of maximum likelihood estimators in a large class of deconvolution models. Canad. J. Statist.Google Scholar
Groeneboom, P., Jongbloed, G., and Witte, B.I. 2012. A maximum smoothed likelihood estimator in the current status continuous mark model. J. Nonparametr. Stat., 24, 85–101.CrossRefGoogle Scholar
Groeneboom, P., Lalley, S.P., and Temme, N.M. 2013. Chernoff's distribution and differential equations of parabolic and Airy type. Submitted.
Hall, P. 1984. Central limit theorem for integrated square error of multivariate nonparametric density estimators. J. Multivariate Anal., 14, 1–16.CrossRefGoogle Scholar
Hall, P. 1992. Effect of bias estimation on coverage accuracy of bootstrap confidence intervals for a probability density. Ann. Statist., 20, 675–694.CrossRefGoogle Scholar
Hall, P., and Horowitz, J.L. 2013. A simple bootstrap method for constructing nonparametric confidence bands for functions. Ann. Statist., 41, 1892–1921.CrossRefGoogle Scholar
Hall, P., and Smith, R.L. 1988. The kernel method for unfolding sphere size distributions. J. Comput. Phys., 74, 409–421.CrossRefGoogle Scholar
Hall, P., and Van Keilegom, I. 2005. Testing for monotone increasing hazard rate. Ann. Statist., 33, 1109–1137.CrossRefGoogle Scholar
Hampel, F.R. 1987. Design, modelling, and analysis of some biological datasets. Pages 111–115 of: Design, data and analysis, by some friends of Cuthbert Daniel. New York: Wiley.Google Scholar
Hansen, B.E. 1991. Nonparametric estimation of functionals for interval censored observations. Master's thesis. Delft University of Technology.Google Scholar
Hanson, D.L., and Pledger, G. 1976. Consistency in Concave Regression. Ann. Statist., 4, 1038–1050.CrossRefGoogle Scholar
Hoel, D.G., and Walburg, H.E. 1972. Statistical analysis of survival experiments. Journal of the National Cancer Institute, 49, 361–372.Google ScholarPubMed
Huang, J., and Wellner, J.A. 1995. Asymptotic normality of the NPMLE of linear functionals for interval censored data, case 1. Statist. Neerlandica, 49, 153–163.CrossRefGoogle Scholar
Huang, Y., and Louis, T.A. 1998. Nonparametric estimation of the joint distribution of survival time and mark variables. Biometrika, 85, 7856–7984.CrossRefGoogle Scholar
Hudgens, M.G., Satten, G.A., and Longini, Jr., I.M. 2001. Nonparametric maximum likelihood estimation for competing risks survival data subject to interval censoring and truncation. Biometrics, 57, 74–80.CrossRefGoogle ScholarPubMed
Hudgens, M.G., Maathuis, M.H., and Gilbert, P.B. 2007. Nonparametric estimation of the joint distribution of a survival time subject to interval censoring and a continuous mark variable. Biometrics, 63, 372–380.CrossRefGoogle Scholar
Ibragimov, I.A., and Linnik, Yu.V. 1971. Independent and stationary sequences of random variables. Wolters-Noordhoff Publishing, Groningen. With a supplementary chapter by I. A. Ibragimov and V. V. Petrov, Translation from the Russian edited by J. F. C. Kingman.Google Scholar
Janson, S. 2013. Moments of the location of the maximum of Brownian motion with parabolic drift. Electron. Commun. Probab., 18, no. 15, 1–8.CrossRefGoogle Scholar
Janson, S., Louchard, G., and Martin-Löf, A. 2010. The maximum of Brownian motion with parabolic drift. Electron. J. Probab., 15, no. 61, 1893–1929.CrossRefGoogle Scholar
Jewell, N.P. 1982. Mixtures of exponential distributions. Ann. Statist, 10, 479–484.CrossRefGoogle Scholar
Jewell, N.P., and Kalbfleisch, J.D. 2004. Maximum likelihood estimation of ordered multinomial parameters. Biostatistics, 5, 291–306.CrossRefGoogle ScholarPubMed
Jewell, N.P., van der Laan, M.J., and Henneman, T. 2003. Nonparametric estimation from current status data with competing risks. Biometrika, 90, 183–197.CrossRefGoogle Scholar
Johnstone, I.M., and Raimondo, M. 2004. Periodic boxcar deconvolution and Diophantine approximation. Ann. Statist., 32, 1781–1804.Google Scholar
Jongbloed, G. 1998a. Exponential deconvolution: two asymptotically equivalent estimators. Statist. Neerlandica, 52, 6–17.CrossRefGoogle Scholar
Jongbloed, G. 1998b. The iterative convex minorant algorithm for nonparametric estimation. J. Comput. Graph. Statist., 7, 310–321.Google Scholar
Jongbloed, G. 2001. Sieved maximum likelihood estimation in Wicksell's problem and related deconvolution problems. Scand. J. Statist., 28, 161–183.CrossRefGoogle Scholar
Jongbloed, G. 2009. Consistent likelihood-based estimation of a star-shaped distribution. Metrika, 69, 265–282.CrossRefGoogle Scholar
Jongbloed, G., and van der Meulen, F.H. 2009. Estimating a concave distribution function from data corrupted with additive noise. Ann. Statist., 37, 782–815.CrossRefGoogle Scholar
Kaipio, J.P., and Somersalo, E. 2005. Statistical and computational inverse problems. Vol. 160. New York: Springer.Google Scholar
Keiding, N. 1991. Age-specific incidence and prevalence: a statistical perspective. J. Roy. Statist. Soc. Ser. A, 154(3), 371–412. With discussion.Google Scholar
Keiding, N., Begtrup, K., Scheike, T.H., and Hasibeder, G. 1996. Estimation from Current Status Data in Continuous Time. Lifetime Data Anal., 2, 119–129.CrossRefGoogle ScholarPubMed
Keiding, N., Højbjerg Hansen, O.K., Sørensen, D.N., and Slama, R. 2012. The current duration approach to estimating time to pregnancy. Scand. J. Statist., 39, 185–204.CrossRefGoogle Scholar
Kim, J.K., and Pollard, D. 1990. Cube root asymptotics. Ann. Statist., 18, 191–219.CrossRefGoogle Scholar
Kitayaporn, D., Vanichseni, S., Mastro, T.D., Raktham, S., Vaniyapongs, T., Des Jarlais, D.C., Wasi, C., Young, N.L., Sujarita, S., Heyward, W.L., and Esparza, J. 1998. Infection with HIV-1 subtypes B and E in injecting drug users screened for enrollment into a prospective cohort in Bangkok, Thailand. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol., 19, 289–295.CrossRefGoogle Scholar
Klein, J.P., and Moeschberger, M.L. 2003. Survival Analysis: Techniques for Censored and Truncated Data. Statistics for Biology and Health. New York: Springer.Google Scholar
Komlós, J., Major, P., and Tusnády, G. 1975. An approximation of partial sums of independent RV's and the sample DF. I. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 32, 111–131.CrossRefGoogle Scholar
Kosorok, M.R. 2008a. Bootstrapping the Grenander estimator. Pages 282–292 of: Beyond parametrics in interdisciplinary research: Festschrift in honor of Professor Pranab K. Sen. Inst. Math. Stat. Collect., vol. 1. Beachwood, OH: Inst. Math. Statist.Google Scholar
Kosorok, M.R. 2008b. Introduction to empirical processes and semiparametric inference. NewYork: Springer.CrossRefGoogle Scholar
Kress, R. 1989. Linear integral equations. Applied Mathematical Sciences, vol. 82. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Kulikov, V.N. 2003. Direct and Indirect Use of Maximum Likelihood. Ph.D. thesis. Delft University of Technology.Google Scholar
Lesperance, M.L., and Kalbfleisch, J.D. 1992. An algorithm for computing the nonparametric MLE of a mixing distribution. J. Amer. Statist. Assoc., 87, 120–126.CrossRefGoogle Scholar
Li, C., and Fine, J.P. 2013. Smoothed nonparametric estimation for current status competing risks data. Biometrika, 100, 173–187.CrossRefGoogle Scholar
Lindsay, B.G. 1995. Mixture models: theory, geometry and applications. Pages i–163 of: NSF-CBMSregional conference series in probability and statistics. JSTOR.Google Scholar
Loève, M. 1963. Probability theory. Third ed. Princeton, NJ–Toronto–London: D. Van Nostrand Co.Google Scholar
Maathuis, M.H. 2005. Reduction algorithm for the NPMLE for the distribution function of bivariate interval-censored data. J. Comput. Graph. Statist., 14, 352–362.CrossRefGoogle Scholar
Maathuis, M.H., and Hudgens, M.G. 2011. Nonparametric inference for competing risks current status data with continuous, discrete or grouped observation times. Biometrika, 98, 325–340.CrossRefGoogle ScholarPubMed
Maathuis, M.H., and Wellner, J.A. 2008. Inconsistency of the MLE for the joint distribution of interval censored survival times and continuous marks. Scand. J. Statist., 35, 83–103.CrossRefGoogle ScholarPubMed
Mackowiak, P.A., Wasserman, S.S., and Levine, M.M. 1992. A critical appraisal of 98.6 degrees F, the upper limit of the normal body temperature, and other legacies of Carl Reinhold August Wunderlich. Journal of the American Medical Association, 268, 1578–1580.Google ScholarPubMed
Mammen, E. 1991. Nonparametric regression under qualitative smoothness assumptions. Ann. Statist., 19, 741–759.CrossRefGoogle Scholar
Marshall, A.W. 1969. Discussion on Barlow and van Zwets paper. Pages 174–176 of: Nonparametric Techniques in Statistical Inference. Proceedings of the First International Symposium on Nonparametric Techniques held at Indiana University, June.Google Scholar
Marshall, A.W., and Proschan, F. 1965. Maximum likelihood estimation for distributions with monotone failure rate. Ann. Math. Statist, 36, 69–77.CrossRefGoogle Scholar
McGarrity, K.S., Sietsma, J., and Jongbloed, G. 2014. Nonparametric inference in a stereological model with oriented cylinders applied to dual phase steel. Submitted for publication.
McLachlan, G.J., and Krishnan, T. 2007. The EM algorithm and extensions. Vol. 382. Hoboken, NJ: John Wiley & Sons.Google Scholar
Meister, A. 2009. Deconvolution problems in nonparametric statistics. Lecture Notes in Statistics, vol. 193. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Meyer, M.C. 2008. Inference using shape-restricted regression splines. Ann. Appl. Stat., 2, 1013–1033.CrossRefGoogle Scholar
Nane, G.F. 2013. Shape Constrained Nonparametric Estimation in the Cox Model. Ph.D. thesis. Delft University of Technology.Google Scholar
Neuhaus, G. 1993. Conditional rank tests for the two-sample problem under random censorship. Ann. Statist., 21, 1760–1779.CrossRefGoogle Scholar
Newcomb, S. 1886. A generalized theory of the combination of observations so as to obtain the best result. American Journal of Mathematics, 343–366.Google Scholar
Ohser, J., and Mücklich, F. 2000. Statistical analysis of microstructures in materials science. New York: John Wiley.Google Scholar
Pal, J.K. 2008. Spiking problem in monotone regression: Penalized residual sum of squares. Statist. Probab. Lett., 78, 1548–1556.CrossRefGoogle Scholar
Patil, G.P., and Rao, C.R. 1978. Weighted distributions and size-biased sampling with applications to wildlife populations and human families. Biometrics, 34, 179–189.CrossRefGoogle Scholar
Peto, R., and Peto, J. 1972. Asymptotically efficient rank invariant test procedures. J.R. Statist. Soc. Series A, 135, 184–207.CrossRefGoogle Scholar
Pimentel, L.P.R. 2014. On the location of the maximum of a continuous stochastic process. J. Appl. Prob., 51, 152–161.
Pitman, J.W. 1983. Remarks on the convex minorant of Brownian motion. Pages 219–227 of: Seminar on stochastic processes, 1982 (Evanston, Ill., 1982). Progr. Probab. Statist., vol. 5. Boston, MA: Birkhauser Boston.Google Scholar
Politis, D.N., Romano, J.P., and Wolf, M. 1999. Subsampling. Springer Series in Statistics. New York: Springer-Verlag.CrossRefGoogle Scholar
Pollard, D. 1984. Convergence of stochastic processes. Springer Series in Statistics. New York: Springer-Verlag.CrossRefGoogle Scholar
Prakasa Rao, B.L.S. 1969. Estimation of a unimodal density. Sankhyā Ser. A, 31, 23–36.Google Scholar
Preusser, F., Degering, D., Fuchs, M., Hilgers, A., Kadereit, A., Klasen, N., Krbetschek, M., Richter, D., and Spencer, J.Q.G. 2008. Luminescence dating: basics, methods and applications. Quaternary Science Journal, 57, 95–149.Google Scholar
Proschan, F., and Pyke, R. 1967. Tests for monotone failure rate. Pages 293–312 of: Proc. Fifth Berkeley Sympos. Mathematical Statistics and Probability (Berkeley, Calif., 1965/66), Vol. III: Physical Sciences. Berkeley, CA: University of California Press.Google Scholar
R Development Core Team. 2011. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
Ramsay, J.O. 1998. Estimating smooth monotone functions. J. R. Statist. Soc.: Series B (Statistical Methodology), 60, 365–375.CrossRefGoogle Scholar
Rebolledo, R. 1980. Central limit theorems for local martingales. Z. Wahrsch. Verw. Gebiete, 51, 269–286.CrossRefGoogle Scholar
Robertson, T., Wright, F.T., and Dykstra, R.L. 1988. Order restricted statistical inference. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. Chichester: John Wiley & Sons.Google Scholar
Rosenblatt, M. 1956a. A central limit theorem and a strong mixing condition. Proc. Nat. Acad. Sci. U.S.A., 42, 43–47.CrossRefGoogle Scholar
Rosenblatt, M. 1956b. Remarks on some nonparametric estimates of a density function. Ann. Math. Statist., 27, 832–837.CrossRefGoogle Scholar
Ross, S.M. 2010. Introduction to probability models. Tenth ed. Burlington, MA: Harcourt/Academic Press.Google Scholar
Ruppert, D., Wand, M.P., and Carroll, R.J. 2003. Semiparametric regression. Cambridge Series in Statistical and Probabilistic Mathematics, vol. 12. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Schoemaker, A.L. 1996. What's normal? Temperature, gender, and heart rate. Journal of Statistics Education, 4.Google Scholar
Schuhmacher, D., Hüsler, A., and Dümbgen, L. 2011. Multivariate log-concave distributions as a nearly parametric model. Statistics & Risk Modeling with Applications in Finance and Insurance, 28(3), 277–295.Google Scholar
Schuster, E.F. 1985. Incorporating support constraints into nonparametric estimators of densities. Comm. Statist. A-Theory Methods, 14, 1123–1136.Google Scholar
Sen, B., Banerjee, M., and Woodroofe, M.B. 2010. Inconsistency of bootstrap: the Grenander estimator. Ann. Statist., 38, 1953–1977.CrossRefGoogle Scholar
Silvapulle, M.J., and Sen, P.K. 2005. Constrained statistical inference: inequality, order and shape constraints. Hoboken, NJ: Wiley.Google Scholar
Silverman, B.W. 1978. Weak and strong uniform consistency of the kernel estimate of a density and its derivatives. Ann. Statist., 6, 177–184.CrossRefGoogle Scholar
Silverman, B.W. 1986. Density estimation for statistics and data analysis. Vol. 26. Boca Raton, FL: CRC press.CrossRefGoogle Scholar
Simar, L. 1976. Maximum likelihood estimation of a compound Poissonprocess. Ann. Statist., 4, 1200–1209.CrossRefGoogle Scholar
Slama, R., Højbjerg Hansen, O.K., Ducot, B., Bohet, A., Sørensen, D., Allemand, L., Eijkemans, M.J., Rosetta, L., Thalabard, J.C., Keiding, N., et al. 2012. Estimation of the frequency of involuntary infertility on a nation-wide basis. Human reproduction, 27, 1489–1498.CrossRefGoogle ScholarPubMed
Song, S. 2001. Estimation with Bivariate Interval Censored data. Ph.D. diss. University of Washington.Google Scholar
Sparre Andersen, E. 1954. On the fluctuations of sums of random variables. II. Math. Scand., 2, 195–223.Google Scholar
Steinsaltz, D., and Orzack, S.H. 2011. Statistical methods forpaleodemography on fossil assemblages having small numbers of specimens: an investigation of dinosaur survival rates. Paleobiology, 37, 113–125.CrossRefGoogle Scholar
Sun, J. 2006. The statistical analysis of interval-censored failure time data. Statistics for Biology and Health. New York: Springer.Google Scholar
Talagrand, M. 1994. Sharper bounds for Gaussian and empirical processes. Ann. Probab., 22, 28–76.CrossRefGoogle Scholar
Talagrand, M. 1996. New concentration inequalities in product spaces. Invent. Math., 126, 505–563.CrossRefGoogle Scholar
Temme, N.M. 1985. A convolution integral equation solved by Laplace transformations. Pages 609–613 of: Proceedings of the international conference on computational and applied mathematics (Leuven, 1984), vol. 12/13.Google Scholar
Tsai, W.-Y., Leurgans, S.E., and Crowley, J.J. 1986. Nonparametric estimation of a bivariate survival function in the presence of censoring. Ann. Statist., 14, 1351–1365.CrossRefGoogle Scholar
Tsybakov, A.B., and Zaiats, V. 2009. Introduction to nonparametric estimation. Vol. 11. New York: Springer.CrossRefGoogle Scholar
Van de Geer, S.A. 1996. Rates of convergence for the maximum likelihood estimator in mixture models. J. Nonparametr. Statist., 6, 293–310.CrossRefGoogle Scholar
Van de Geer, S.A. 2000. Applications of empirical process theory. Cambridge Series in Statistical and Probabilistic Mathematics, vol. 6. Cambridge: Cambridge University Press.Google Scholar
Van der Laan, M.J. 1996. Efficient estimation in the bivariate censoring model and repairing NPMLE. Ann. Statist., 24, 596–627.Google Scholar
Van der Vaart, A.W. 1991. On differentiable functionals. Ann. Statist., 19, 178–204.Google Scholar
Van der Vaart, A.W., and Van der Laan, M.J. 2003. Smooth estimation of a monotone density. Statistics: A Journal of Theoretical and Applied Statistics, 37, 189–203.CrossRefGoogle Scholar
Van der Vaart, A.W., and Wellner, J.A. 1996. Weak convergence and empirical processes. Springer Series in Statistics. New York: Springer-Verlag.CrossRefGoogle Scholar
Van Eeden, C. 1956. Maximum likelihood estimation of ordered probabilities. Nederl. Akad. Wetensch. Proc. Ser. A. 59 = Indag. Math., 18, 444–455.Google Scholar
Van Es, A.J., and Hoogendoorn, A.W. 1990. Kernel estimation in Wicksell's corpuscle problem. Biometrika, 77, 139–145.Google Scholar
Van Es, A.J., and van Zuijlen, M.C.A. 1996. Convex minorant estimators of distributions in non-parametric deconvolution problems. Scand. J. Statist., 23, 85–104.Google Scholar
Van Es, A.J., Jongbloed, G., and van Zuijlen, M.C.A. 1998. Isotonic inverse estimators for nonparametric deconvolution. Ann. Statist., 26, 2395–2406.Google Scholar
Van Trees, H.L. 1968. Detection, estimation, and modulation theory. New York: Wiley.Google Scholar
Vanichseni, S., Kitayaporn, D., Mastro, T.D., Mock, P.A., Raktham, S., D.C., Des Jarlais, Sujarita, S., Srisuwanvilai, L.O., Young, N.L., Wasi, C., Subbarao, S., Heyward, W.L., Esparza, J., and Choopanya, K. 2001. Continued high HIV-1 incidence in a vaccine trial preparatory cohort of injection drug users in Bangkok, Thailand. AIDS, 15, 397–405.CrossRefGoogle Scholar
Vardi, Y. 1982. Nonparametric estimation in the presence of length bias. Ann. Statist., 10, 616–620.Google Scholar
Walther, G. 2001. Multiscale maximum likelihood analysis of a semiparametric model, with applications. Ann. Statist., 29, 1297–1319.Google Scholar
Wand, M.P., and Jones, M.C. 1995. Kernel smoothing. Vol. 60. Boca Raton, FL: Crc Press.CrossRefGoogle Scholar
Watson, G.S. 1971. Estimating functionals of particle size distributions. Biometrika, 58, 483–490.CrossRefGoogle Scholar
Wellner, J.A. 1995. Interval censoring, case 2: alternative hypotheses. Pages 271–291 of: Analysis of censored data (Pune, 1994/1995). IMS Lecture Notes Monogr. Ser., vol. 27. Hayward, CA: Inst. Math. Statist.Google Scholar
Wellner, J.A., and Zhan, Y. 1997. A hybrid algorithm for computation of the nonparametric maximum likelihood estimator from censored data. J. Amer. Statist. Assoc., 92, 945–959.CrossRefGoogle Scholar
Wicksell, S.D. 1925. The corpuscle problem. Biometrika, 17, 84–99.CrossRefGoogle Scholar
Wicksell, S.D. 1926. The corpuscle problem: second memoir: case of ellipsoidal corpuscles. Biometrika, 18, 151–172.Google Scholar
Woodroofe, M.B., and Sun, J. 1993. A penalized maximum likelihood estimate of f(0+) when f is nonincreasing. Statist. Sinica, 3, 501–515.Google Scholar
Wright, S.J. 1997. Primal-dual interior-point methods. Vol. 54. Philadelphia, PA: Siam.CrossRefGoogle Scholar
Wu, C.-F.J. 1983. On the convergence properties of the EM algorithm. Ann. Statist., 11, 95–103.CrossRefGoogle Scholar
Wynn, H.P. 1970. The sequential generation of D-optimum experimental designs. Ann. Math. Statist., 41, 1655–1664.CrossRefGoogle Scholar
Yu, B. 1997. Assouad, Fano, and Le Cam. Pages 423–435 of: Festschrift for Lucien Le Cam. Springer.Google Scholar
Zeidler, E. 1985. Nonlinear functional analysis and its applications. III. Variational methods and optimization. Translated from the German by Leo F. Boron. New York: Springer-Verlag.CrossRefGoogle Scholar
Zhang, S., Karunamuni, R.J., and Jones, M.C. 1999. An improved estimator of the density function at the boundary. J. Amer. Statist. Assoc., 94, 1231–1240.CrossRefGoogle Scholar
Zhang, Y. 2006. Nonparametric k-sample tests with panel count data. Biometrika, 93, 777–790.CrossRefGoogle Scholar
Zhang, Y., Liu, W., and Zhan, Y. 2001. A nonparametric two-sample test of the failure function with interval censoring case 2. Biometrika, 88, 677–686.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Piet Groeneboom, Technische Universiteit Delft, The Netherlands, Geurt Jongbloed, Technische Universiteit Delft, The Netherlands
  • Book: Nonparametric Estimation under Shape Constraints
  • Online publication: 18 December 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139020893.015
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Piet Groeneboom, Technische Universiteit Delft, The Netherlands, Geurt Jongbloed, Technische Universiteit Delft, The Netherlands
  • Book: Nonparametric Estimation under Shape Constraints
  • Online publication: 18 December 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139020893.015
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Piet Groeneboom, Technische Universiteit Delft, The Netherlands, Geurt Jongbloed, Technische Universiteit Delft, The Netherlands
  • Book: Nonparametric Estimation under Shape Constraints
  • Online publication: 18 December 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139020893.015
Available formats
×