Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T16:37:58.336Z Has data issue: false hasContentIssue false

6 - Lectures on elimination theory for semialgebraic and subanalytic sets

Published online by Cambridge University Press:  05 August 2015

A.J. Wilkie
Affiliation:
Cambridge University Press
G. O. Jones
Affiliation:
University of Manchester
A. J. Wilkie
Affiliation:
University of Manchester
Get access

Summary

During the Fall Semester of 2010 I gave a course of lectures at the University of Illinois at Chicago, repeated at the University of Notre Dame, to the graduate students in Logic, and these are the notes of that course. I am extremely grateful to David Marker and Sergei Starchenko for the invitations, and for their kind hospitality during my visit. Many thanks also to the students for typing up the notes, which had remained in scruffy hand written form since I first gave a version of the course to the Logic Advanced Class in Oxford during the Trinity Term of 1994.

My intention in these lecture notes is to present all the mathematical background required for the proof of the quantifier elimination theorem of Denef and van den Dries for the structure Ran in a language with a function symbol for division. Of course, I also give the proof of the theorem itself and here I experimented with using the model theoretic embedding criterion for quantifier elimination rather than following the original paper. However, I now feel that any improvements are minimal and cosmetic.

The prerequisites are, I hope, just a working knowledge of undergraduate algebra and analysis and an introductory graduate course in model theory. So I present the theory of Noetherian rings up to the Artin-Rees Lemma and the Krull Intersection Theorem on the algebraic side, and the basics of convergent power series and analytic functions up to the Weierstrass Preparation Theorem on the analytic side. The two sides come together in the proof of the deepest mathematical result used by Denef and van den Dries, namely the flatness of the ring of convergent power series in the ring of formal power series. (In fact, only the linear closure (and for just one linear equation) of the former ring in the latter is actually needed, so I do not need to mention the general notion of flatness, and thereby avoid a discussion of tensor products.)

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×