Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-28T02:53:41.927Z Has data issue: false hasContentIssue false

23 - Molecular effects of UV and ionizing radiations on DNA

from Part VI - Life in extreme conditions

Published online by Cambridge University Press:  04 February 2011

Jean Cadet
Affiliation:
Laboratoire Lésions des Acides Nucléiques, Grenoble, France
Thierry Douki
Affiliation:
Laboratoire Lésions des Acides Nucléiques, Grenoble, France
Muriel Gargaud
Affiliation:
Université de Bordeaux
Purificación López-Garcìa
Affiliation:
Université Paris-Sud 11
Hervé Martin
Affiliation:
Université de Clermont-Ferrand II (Université Blaise Pascal), France
Get access

Summary

Introduction

Survival of microorganisms in outer space, such as resistant bacterial endospores, is affected by harsh environmental conditions including microgravity, space vacuum leading to desiccation, wide variations in temperature and a strong radiation component of both galactic and solar origins (Nicholson et al., 2000). Solar extraterrestrial UV radiation is mostly deleterious due to its UV component consisting of genotoxic UVC (200 < λ < 280 nm) and more energetic vacuum–UV photons (140 < λ < 200 nm) that are able to ionize biomolecules but exhibit very low penetrating features. The galactic cosmic radiation (CGR) is composed predominantly of high-energy protons (85%), electrons, α-particles and high-charge (Z) and energy (E) nuclei (HZE). In addition, solar particle radiation that mostly consists of protons with very small amounts of α-particles and HZE ions is emitted during solar wind and erratic solar flares (Nicholson et al., 2000; Cucinotta et al., 2008). UVC and UVB photons (280 < λ < 320 nm) are, in the absence of shielding, the main lethal components of space radiation. However, an efficient protection against molecular effects of UV radiations is likely to occur when spores are embedded in micrometeorites according to the scenario that has been proposed for allowing interplanetary or interstellar transfer of microorganisms (Mileikowsky et al., 2000; Nicholson et al., 2000). In contrast, under the latter conditions, protection of microorganisms against the damaging effects of CGR, and more precisely, of highly penetrating HZE particles, is at best very limited.

Type
Chapter
Information
Origins and Evolution of Life
An Astrobiological Perspective
, pp. 359 - 374
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×