Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T07:22:13.769Z Has data issue: false hasContentIssue false

11 - The young Sun and its influence on planetary atmospheres

from Part II - Astronomical and geophysical context of the emergence of life

Published online by Cambridge University Press:  04 February 2011

Manuel Güdel
Affiliation:
Institute of Astronomy, Zurich, Switzerland
James Kasting
Affiliation:
Penn State University, USA
Muriel Gargaud
Affiliation:
Université de Bordeaux
Purificación López-Garcìa
Affiliation:
Université Paris-Sud 11
Hervé Martin
Affiliation:
Université de Clermont-Ferrand II (Université Blaise Pascal), France
Get access

Summary

The young Sun: activity and radiation

Magnetic activity in the young Sun

The Sun's magnetic activity has steadily declined throughout its main-sequence lifetime. This is an immediate consequence of the declining dynamo as a star spins down by losing angular momentum through its magnetized wind. Along with the decline in magnetic activity, solar radiation ultimately induced by the magnetic fields declined as well, and hence the short-wavelength radiative input into planetary atmospheres diminished with time. (By contrast, solar radiation at visible wavelengths increased with time, as discussed below.) Similarly, the magnetically guided solar wind and high-energy particle fluxes were very likely to be different in the young solar environment compared to present-day conditions. A closer understanding of the magnetic behaviour of the young Sun is therefore pivotal for further modelling of young planetary atmospheres, their chemistry, heating and erosion.

Magnetic activity expresses itself in a variety of features, including dark photospheric, magnetic spots, photospheric faculae and chromospheric plage producing optical and ultraviolet excess radiation, and – most dramatically – magnetically confined coronae containing million-degree plasma that emits extreme-ultraviolet and X-ray emission. Occasional magnetic instabilities (flares) and shocks both in the corona and in interplanetary space accelerate particles to energies much beyond 1 MeV; related electromagnetic radiation (e.g. from collisions) is emitted in the hard X-ray and gamma-ray range (Lin et al., 2002).

Type
Chapter
Information
Origins and Evolution of Life
An Astrobiological Perspective
, pp. 167 - 182
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×