Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-13T23:41:08.911Z Has data issue: false hasContentIssue false

8 - Stochastic quantisation

Published online by Cambridge University Press:  04 April 2011

Get access

Summary

So far our approximations have been wholly analytic, essentially based on perturbation series. The calculation of (g − 2) for the electron has shown just how successful this approach can be.

However, in many ways (g − 2) is an exception. Most quantities that we would like to calculate (e.g. the pion mass in quantum chromodynamics, the field theory of the strong interactions) cannot be approached analytically. Although analytic methods do give us a lot of information (that is, after all, what this book is about) it is often of a qualitative nature. For this reason a variety of numerical methods have been developed for approximating the path integral directly. Bypassing problems of measure, they typically involve putting the theory on a Euclidean lattice, as in the case of the regularised ZΛ(j) of (6.74). The resulting integrals can then be calculated directly, although a sizeable lattice requires considerable computing resources. All the uncertainties of the method are displaced into the problem of recovering the continuum limit.

It is often difficult to link such tactics to the analytic ideas of continuum field theory. Before turning to more realistic theories we shall give a brief description of an alternative interpretation of formal Euclidean path integrals, proposed by Parisi and Wu (1981).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Stochastic quantisation
  • R. J. Rivers
  • Book: Path Integral Methods in Quantum Field Theory
  • Online publication: 04 April 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511564055.009
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Stochastic quantisation
  • R. J. Rivers
  • Book: Path Integral Methods in Quantum Field Theory
  • Online publication: 04 April 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511564055.009
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Stochastic quantisation
  • R. J. Rivers
  • Book: Path Integral Methods in Quantum Field Theory
  • Online publication: 04 April 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511564055.009
Available formats
×