Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T12:27:09.169Z Has data issue: false hasContentIssue false

Chapter 9 - Hereditary and Acquired Tubulointerstitial Diseases

from Section 3 - Tubulointerstitial Diseases

Published online by Cambridge University Press:  10 August 2023

Helen Liapis
Affiliation:
Ludwig Maximilian University, Nephrology Center, Munich, Adjunct Professor and Washington University St Louis, Department of Pathology and Immunology, Retired Professor
Get access

Summary

Many entities affect specifically the tubulointerstitium, most often sparing the glomeruli and vessels, but exact subclassification is difficult because the histologic findings may have overlapping features. Frequently biopsies are performed shortly after symptoms manifest (in the acute phase). There is controversy in the terminology of chronic lesions; for example the term chronic pyelonephritis, particularly in the pediatric population, has fallen out of favor, replaced by other terms such as reflux nephropathy. However, careful examination and clinicopathologic correlation helps to pinpoint the cause and guide appropriate patient management. In this chapter, the focus is on the histopathology of acquired and hereditary tubulointerstitial diseases in native kidneys.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Zeisberg, M., Kalluri, R.. Physiology of the renal interstitium. Clin J Am Soc Nephrol. 2015;10:1831–40.Google Scholar
Kuppe, C., Ibrahim, M. M., Kranz, J., Zhang, X., Ziegler, S., Perales-Patón, J., et al. Decoding myofibroblast origins in human kidney fibrosis. Nature. 2021;589(7841):281–6.Google Scholar
Falke, L. L., Gholizadeh, S., Goldschmeding, R., Kok, R. J., Nguyen, T. Q.. Diverse origins of the myofibroblast—implications for kidney fibrosis. Nat Rev Nephrol. 2015;11(4):233–44.CrossRefGoogle ScholarPubMed
Srivastava, A., Palsson, R., Kaze, A. D., Chen, M. E., Palacios, P., Sabbisetti, V., et al. The prognostic value of histopathologic lesions in native kidney biopsy specimens: Results from the Boston Kidney Biopsy Cohort Study. J Am Soc Nephrol. 2018;29:2213–24.Google Scholar
Joyce, E., Glasner, P., Ranganathan, S., Swiatecka-Urban, A.. Tubulointerstitial nephritis: Diagnosis, treatment, and monitoring. Pediatr Nephrol. 2017;32:577–87.Google Scholar
Baker, R. J., Pusey, C. D.. The changing profile of acute tubulointerstitial nephritis. Nephrol Dial Transplant. 2004;19:811.Google Scholar
Clarkson, M. R., Giblin, L., O’Connell, F. P., O’Kelly, P., Walshe, J. J., Conlon, P., et al. Acute interstitial nephritis: Clinical features and response to corticosteroid therapy. Nephrol Dial Transplant. 2004;19:2778–83.Google Scholar
Mirkovic, K., Doorenbos, C. R., Dam, W. A., Lambers Heerspink, H. J., Slagman, M. C., Nauta, F. L., et al. Urinary vitamin D binding protein: A potential novel marker of renal interstitial inflammation and fibrosis. PLoS ONE. 2013;8:e55887.Google Scholar
Robles, N. R., Lopez-Gomez, J., Garcia-Pino, G., Ferreira, F., Alvarado, R., Sanchez-Casado, E., et al. Use of alpha1-microglobulin for diagnosing chronic interstitial nephropathy. Clin Exp Med. 2014;14:315–20.Google Scholar
Muriithi, A. K., Nasr, S. H., Leung, N.. Utility of urine eosinophils in the diagnosis of acute interstitial nephritis. Clin J Am Soc Nephrol. 2013;8:1857–62.CrossRefGoogle ScholarPubMed
Perazella, M. A. Clinical approach to diagnosing acute and chronic tubulointerstitial disease. Adv Chronic Kidney Dis. 2017;24(2):5763.CrossRefGoogle ScholarPubMed
Eddy, A. A.. Drug-induced tubulointerstitial nephritis: Hypersensitivity and necroinflammatory pathways. Pediatr Nephrol. 2020;35(4):547–54.Google Scholar
Raghavan, R., Eknoyan, G.. Acute interstitial nephritis – A reappraisal and update. Clin Nephrol. 2014;82:149–62.Google Scholar
Ulinski, T., Sellier-Leclerc, A. L., Tudorache, E., Bensman, A., Aoun, B.. Acute tubulointerstitial nephritis. Pediatr Nephrol. 2012;27:1051–7.Google Scholar
Roy, S., Awogbemi, T., Holt, R. C. L.. Acute tubulointerstitial nephritis in children – A retrospective case series in a UK tertiary paediatric centre. BMC Nephrol. 2020;21(1):17.Google Scholar
Kamath, N., Iyengar, A.. Infections and the kidney: A tale from the tropics. Pediatr Nephrol. 2018;33:1317–26.Google Scholar
Bijol, V., Mendez, G. P., Nose, V., Rennke, H. G.. Granulomatous interstitial nephritis: A clinicopathologic study of 46 cases from a single institution. Int J Surg Pathol. 2006;14:5763.Google Scholar
Gonzalez, E., Gutierrez, E., Galeano, C., Chevia, C., de Sequera, P., Bernis, C., et al. Early steroid treatment improves the recovery of renal function in patients with drug-induced acute interstitial nephritis. Kidney Int. 2008;73:940–6.Google Scholar
Fernandez-Juarez, G., Perez, J. V., Caravaca-Fontan, F., Quintana, L., Shabaka, A., Rodriguez, E., et al. Duration of treatment with corticosteroids and recovery of kidney function in acute interstitial nephritis. Clin J Am Soc Nephrol. 2018;13:1851–8.CrossRefGoogle ScholarPubMed
Montini, G., Tullus, K., Hewitt, I.. Febrile urinary tract infections in children. N Engl J Med. 2011;365:239–50.Google Scholar
Morello, W., La Scola, C., Alberici, I., Montini, G.. Acute pyelonephritis in children. Pediatr Nephrol. 2016;31:1253–65.Google Scholar
Hewitt, I. K., Zucchetta, P., Rigon, L., Maschio, F., Molinari, P. P., Tomasi, L., et al. Early treatment of acute pyelonephritis in children fails to reduce renal scarring: Data from the Italian Renal Infection Study Trials. Pediatrics. 2008;122:486–90.CrossRefGoogle ScholarPubMed
Johnson, J. R., Russo, T. A.. Acute pyelonephritis in adults. N Engl J Med. 2018;378:4859.Google Scholar
Robinson, J. L., Finlay, J. C., Lang, M. E., Bortolussi, R., Canadian Paediatric Society, Infectious Diseases and. Immunization Committee, Community Paediatrics Committee. Urinary tract infections in infants and children: Diagnosis and management. Paediatr Child Health. 2014;19:315–25.Google Scholar
Sastre, J. B., Aparicio, A. R., Cotallo, G. D., Colomer, B. F., Hernandez, M. C., Grupo de Hospitales Castrillo. Urinary tract infection in the newborn: Clinical and radio imaging studies. Pediatr Nephrol. 2007;22:1735–41.Google Scholar
Nicolaou, N., Renkema, K. Y., Bongers, E. M., Giles, R. H., Knoers, N. V.. Genetic, environmental, and epigenetic factors involved in CAKUT. Nat Rev Nephrol. 2015;11:720–31.Google Scholar
Li, B., Haridas, B., Jackson, A. R., Cortado, H., Mayne, N., Kohnken, R., et al. Inflammation drives renal scarring in experimental pyelonephritis. Am J Physiol Renal Physiol. 2017;312:F43F53.Google Scholar
Hewitt, I. K., Pennesi, M., Morello, W., Ronfani, L., Montini, G.. Antibiotic prophylaxis for urinary tract infection-related renal scarring: A systematic review. Pediatrics. 2017;139: e20163145.CrossRefGoogle ScholarPubMed
Douira, W., Louati, H., Jarraya, H., Ben Hassine, L., Tinsa, F., Sahli, S., et al. Pyelonephritis xanthogranulomatous in childhood: Case report and literature review. Tunis Med. 2009;87:538–41.Google Scholar
Pleniceanu, O., Twig, G., Tzur, D., Sherman, G., Afek, A., Erlich, T., et al. Acute pyelonephritis in children and the risk of end-stage kidney disease. J Nephrol. 2021;34:1757–65.Google Scholar
Azar, R., Verove, C., Boldron, A.. Delayed onset of uveitis in TINU syndrome. J Nephrol. 2000;13:381–3.Google Scholar
Clive, D. M., Vanguri, V. K.. The syndrome of tubulointerstitial nephritis with uveitis (TINU). Am J Kidney Dis. 2018;72:118–28.CrossRefGoogle ScholarPubMed
Perasaari, J., Saarela, V., Nikkila, J., Ala-Houhala, M., Arikoski, P., Kataja, J., et al. HLA associations with tubulointerstitial nephritis with or without uveitis in Finnish pediatric population: A nation-wide study. Tissue Antigens. 2013;81:435–41.Google Scholar
Okafor, L. O., Hewins, P., Murray, P. I., Denniston, A. K.. Tubulointerstitial nephritis and uveitis (TINU) syndrome: A systematic review of its epidemiology, demographics and risk factors. Orphanet J Rare Dis. 2017;12:128.Google Scholar
Cigni, A., Soro, G., Faedda, R., Caucci, F., Amadori, F., Manca, A., et al. A case of adult-onset tubulointerstitial nephritis and uveitis (“TINU syndrome”) associated with sacroileitis and Epstein-Barr virus infection with good spontaneous outcome. Am J Kidney Dis. 2003;42:E410.Google Scholar
Kobayashi, Y., Honda, M., Yoshikawa, N., Ito, H.. Acute tubulointerstitial nephritis in 21 Japanese children. Clin Nephrol. 2000;54:191–7.Google Scholar
Matsumoto, K., Fukunari, K., Ikeda, Y., Miyazono, M., Kishi, T., Matsumoto, R., et al. A report of an adult case of tubulointerstitial nephritis and uveitis (TINU) syndrome, with a review of 102 Japanese cases. Am J Case Rep. 2015;16:119–23.Google Scholar
Yanagihara, T., Kitamura, H., Aki, K., Kuroda, N., Fukunaga, Y.. Serial renal biopsies in three girls with tubulointerstitial nephritis and uveitis syndrome. Pediatr Nephrol. 2009;24:1159–64.Google Scholar
Jahnukainen, T., Ala-Houhala, M., Karikoski, R., Kataja, J., Saarela, V., Nuutinen, M.. Clinical outcome and occurrence of uveitis in children with idiopathic tubulointerstitial nephritis. Pediatr Nephrol. 2011;26:291–9.Google Scholar
Thumfart, J., Muller, D., Rudolph, B., Zimmering, M., Querfeld, U., Haffner, D.. Isolated sarcoid granulomatous interstitial nephritis responding to infliximab therapy. Am J Kidney Dis. 2005;45:411–14.CrossRefGoogle ScholarPubMed
Berliner, A. R., Haas, M., Choi, M. J.. Sarcoidosis: The nephrologist’s perspective. Am J Kidney Dis. 2006;48:856–70.Google Scholar
Joss, N., Morris, S., Young, B., Geddes, C.. Granulomatous interstitial nephritis. Clin J Am Soc Nephrol. 2007;2:222–30.Google Scholar
Stehle, T., Joly, D., Vanhille, P., Boffa, J. J., Remy, P., Mesnard, L., et al. Clinicopathological study of glomerular diseases associated with sarcoidosis: A multicenter study. Orphanet J Rare Dis. 2013;8:65.Google Scholar
Wang, C., Liu, H., Zhang, T., Xu, H., Shen, J., Feng, J., et al. Acute kidney injury as a rare manifestation of pediatric sarcoidosis: A case report and systematic literature review. Clin Chim Acta. 2019;489:6874.Google Scholar
Gobel, U., Kettritz, R., Schneider, W., Luft, F.. The protean face of renal sarcoidosis. J Am Soc Nephrol. 2001;12:616–23.Google ScholarPubMed
Vorselaars, A. D., van Moorsel, C. H., Deneer, V. H., Grutters, J. C.. Current therapy in sarcoidosis, the role of existing drugs and future medicine. Inflamm Allergy Drug Targets. 2013;12:369–77.Google Scholar
Vorselaars, A. D., Verwoerd, A., van Moorsel, C. H., Keijsers, R. G., Rijkers, G. T., Grutters, J. C.. Prediction of relapse after discontinuation of infliximab therapy in severe sarcoidosis. Eur Respir J. 2014;43:602–9.Google Scholar
Valeyre, D., Prasse, A., Nunes, H., Uzunhan, Y., Brillet, P. Y., Muller-Quernheim, J.. Sarcoidosis. Lancet. 2014;383:1155–67.Google Scholar
Goules, A., Geetha, D., Arend, L. J., Baer, A. N.. Renal involvement in primary Sjogren’s syndrome: Natural history and treatment outcome. Clin Exp Rheumatol. 2019;37 Suppl 118:123–32.Google Scholar
Bogdanovic, R., Basta-Jovanovic, G., Putnik, J., Stajic, N., Paripovic, A.. Renal involvement in primary Sjogren syndrome of childhood: Case report and literature review. Mod Rheumatol. 2013;23:182–9.Google Scholar
Tarvin, S. E., O’Neil, K. M.. Systemic lupus erythematosus, Sjogren syndrome, and mixed connective tissue disease in children and adolescents. Pediatr Clin North Am. 2018;65:711–37.Google Scholar
Kidder, D., Rutherford, E., Kipgen, D., Fleming, S., Geddes, C., Stewart, G. A.. Kidney biopsy findings in primary Sjogren syndrome. Nephrol Dial Transplant. 2015;30:1363–9.Google Scholar
Mori, Y., Kishimoto, N., Yamahara, H., Kijima, Y., Nose, A., Uchiyama-Tanaka, Y., et al. Predominant tubulointerstitial nephritis in a patient with systemic lupus nephritis. Clin Exp Nephrol. 2005;9:7984.Google Scholar
Zappitelli, M., Duffy, C. M., Bernard, C., Gupta, I. R.. Evaluation of activity, chronicity and tubulointerstitial indices for childhood lupus nephritis. Pediatr Nephrol. 2008;23:8391.Google Scholar
Eckardt, K. U., Alper, S. L., Antignac, C., Bleyer, A. J., Chauveau, D., Dahan, K., et al. Autosomal dominant tubulointerstitial kidney disease: Diagnosis, classification, and management—A KDIGO consensus report. Kidney Int. 2015;88:676–83.Google Scholar
Yang, J., Zhang, Y., Zhou, J.. UMOD gene mutations in Chinese patients with autosomal dominant tubulointerstitial kidney disease: A pediatric case report and literature review. BMC Pediatr. 2019;19:145.CrossRefGoogle ScholarPubMed
Mihatsch, M. J., Gudat, F., Zollinger, H. U., Heierli, C., Tholen, H., Reutter, F. W.. Systemic karyomegaly associated with chronic interstitial nephritis. A new disease entity? Clin Nephrol. 1979;12:5462.Google Scholar
Isnard, P., Rabant, M., Labaye, J., Antignac, C., Knebelmann, B., Zaidan, M.. Karyomegalic interstitial nephritis: A case report and review of the literature. Medicine (Baltimore). 2016;95:e3349.CrossRefGoogle ScholarPubMed
Monga, G., Banfi, G., Salvadore, M., Amatruda, O., Bozzola, C., Mazzucco, G.. Karyomegalic interstitial nephritis: Report of 3 new cases and review of the literature. Clin Nephrol. 2006;65:349–55.Google Scholar
Bhandari, S., Kalowski, S., Collett, P., Cooke, B. E., Kerr, P., Newland, R., et al. Karyomegalic nephropathy: An uncommon cause of progressive renal failure. Nephrol Dial Transplant. 2002;17:1914–20.Google Scholar
Zhou, W., Otto, E. A., Cluckey, A., Airik, R., Hurd, T. W., Chaki, M., et al. FAN1 mutations cause karyomegalic interstitial nephritis, linking chronic kidney failure to defective DNA damage repair. Nat Genet. 2012;44:910–15.Google Scholar
Thongthip, S., Bellani, M., Gregg, S. Q., Sridhar, S., Conti, B. A., Chen, Y., et al. Fan1 deficiency results in DNA interstrand cross-link repair defects, enhanced tissue karyomegaly, and organ dysfunction. Genes Dev. 2016;30:645–59.CrossRefGoogle ScholarPubMed
Airik, R., Schueler, M., Airik, M., Cho, J., Porath, J. D., Mukherjee, E., et al. A FANCD2/FANCI-associated nuclease 1-knockout model develops karyomegalic interstitial nephritis. J Am Soc Nephrol. 2016;27:3552–9.CrossRefGoogle ScholarPubMed
Ravindran, A., Cortese, C., Larsen, C. P., Wadei, H. M., Gandhi, M. J., Cosio, F. G., et al. Karyomegalic interstitial nephritis in a renal allograft. Am J Transplant. 2019;19:285–90.Google Scholar
Gubler, M. C.. Renal tubular dysgenesis. Pediatr Nephrol. 2014;29:51–9.Google Scholar
Gubler, M. C., Antignac, C.. Renin-angiotensin system in kidney development: Renal tubular dysgenesis. Kidney Int. 2010;77:400–6.Google Scholar
Gribouval, O., Moriniere, V., Pawtowski, A., Arrondel, C., Sallinen, S. L., Saloranta, C., et al. Spectrum of mutations in the renin-angiotensin system genes in autosomal recessive renal tubular dysgenesis. Hum Mutat. 2012;33:316–26.Google Scholar
Linn, R. L., Kiley, J., Minturn, L., Fritsch, M. K., Dejulio, T., Rostlund, E., et al. Recurrent massive perivillous fibrin deposition in the placenta associated with fetal renal tubular dysgenesis: Case report and literature review. Pediatr Dev Pathol. 2013;16:378–86.Google Scholar
Moldavsky, M.. Non-specific histopathological changes in kidney with renal tubular dysgenesis. Pathol Res Pract. 2010;206:1418.Google Scholar
Bartter, F. C., Pronove, P., Gill, J. R. Jr., Maccardle, R. C.. Hyperplasia of the juxtaglomerular complex with hyperaldosteronism and hypokalemic alkalosis. A new syndrome. Am J Med. 1962;33:811–28.Google Scholar
Besouw, M. T. P., Kleta, R., Bockenhauer, D.. Bartter and Gitelman syndromes: Questions of class. Pediatr Nephrol. 2020;35:1815–24.Google Scholar
Downie, M. L., Lopez Garcia, S. C., Kleta, R., Bockenhauer, D.. Inherited tubulopathies of the kidney: Insights from genetics. Clin J Am Soc Nephrol. 2021;16:620630.Google Scholar
Su, I. H., Frank, R., Gauthier, B. G., Valderrama, E., Simon, D. B., Lifton, R. P., Trachtman, H.. Bartter syndrome and focal segmental glomerulosclerosis: A possible link between the two diseases. Pediatr Nephrol 2000;14:970–2.Google Scholar
Walsh, P. R., Tse, Y., Ashton, E., Iancu, D., Jenkins, L., Bienias, M., et al. Clinical and diagnostic features of Bartter and Gitelman syndromes. Clin Kidney J. 2018;11:302–9.Google Scholar
Konrad, M., Nijenhuis, T., Ariceta, G., Bertholet-Thomas, A., Calo, L. A., Capasso, G., et al. Diagnosis and management of Bartter syndrome: Executive summary of the consensus and recommendations from the European Rare Kidney Disease Reference Network Working Group for Tubular Disorders. Kidney Int. 2021;99(2):324–35.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×