Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-13T02:15:28.846Z Has data issue: false hasContentIssue false

Section IV - Neoplastic Disorders of Bone Marrow

Published online by Cambridge University Press:  25 January 2024

Xiayuan Liang
Affiliation:
Children’s Hospital of Colorado
Bradford Siegele
Affiliation:
Children’s Hospital of Colorado
Jennifer Picarsic
Affiliation:
Cincinnati Childrens Hospital Medicine Center
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Swerdlow, S, Campo, E, Harris, N, et al., eds. WHO classification of tumors of haematopoietic and lymphoid tissues. Rev. 4th ed. Lyon, France: IARC Press; 2017.Google Scholar
Wood, B, Wu, D, Crossley, B, et al. Measurable residual disease detection by high-throughput sequencing improves risk stratification for pediatric B-ALL. Blood. 2018;131:1350–9.Google Scholar
Borowitz, MJ, Wood, BL, Devidas, M, et al. Prognostic significance of minimal residual disease in high risk B-ALL: a report from Children’s Oncology Group study AALL0232. Blood. 2015;126:964–71.Google Scholar
Wood, BL. Principles of minimal residual disease detection for hematopoietic neoplasms by flow cytometry. Cytometry B Clin Cytom. 2016;90:4753.Google Scholar
Berry, DA, Zhou, S, Higley, H, et al. Association of minimal residual disease with clinical outcome in pediatric and adult acute lymphoblastic leukemia: a meta-analysis. JAMA Oncol. 2017;3(7):e170580.Google Scholar
Brown, PA, Wieduwilt, M, Logan, A, et al. Guidelines insights: acute lymphoblastic leukemia, version 1.2019. J Natl Compr Canc Netw. 2019;17:414–23.Google Scholar
Theunissen, P, Mejstrikova, E, Sedek, L, et al. Standardized flow cytometry for highly sensitive MRD measurements in B-cell acute lymphoblastic leukemia. Blood. 2017;129:347–57.Google Scholar
Brando, B, Gatti, A, Preijers, F. Flow cytometric diagnosis of paroxysmal nocturnal hemoglobinuria: pearls and pitfalls – a critical review article. EJIFCC. 2019;30:355–70.Google Scholar
Illingworth, A, Marinov, I, Sutherland, DR, et al. ICCS/ESCCA consensus guidelines to detect GPI-deficient cells in paroxysmal nocturnal hemoglobinuria (PNH) and related disorders part 3-data analysis, reporting and case studies. Cytometry B Clin Cytom. 2018;94:4966.Google Scholar
Fisher, GH, Rosenberg, FJ, Straus, SE, et al. Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome. Cell. 1995;81:935–46.Google Scholar
Oliveira, JB, Bleesing, JJ, Dianzani, U, et al. Revised diagnostic criteria and classification for the autoimmune lymphoproliferative syndrome (ALPS): report from the 2009 NIH International Workshop. Blood. 2010;116:e3540.Google Scholar
Chisholm, KM, Xu, M, Davis, B, et al. Evaluation of the utility of bone marrow morphology and ancillary studies in pediatric patients under surveillance for myelodysplastic syndrome. Am J Clin Pathol. 2018;149:499513.Google Scholar
Veltroni, M, Sainati, L, Zecca, M, et al. Advanced pediatric myelodysplastic syndromes: can immunophenotypic characterization of blast cells be a diagnostic and prognostic tool? Pediatr Blood Cancer. 2009;52:357–63.Google Scholar
Pittaluga, S, Barry, TS, Raffeld, M. Immunohistochemistry for the hematopathology laboratory. In: Jaffe, ES, Arber, DA, Campo, E, et al., eds. Hematopathology. 2nd ed. Philadelphia, PA: Elsevier; 2017:4152.Google Scholar
Taylor, CR, Rudbeck, L. Immunohistochemical staining methods. 6th ed. Glostrup, Denmark: Dako Denmark; 2013.Google Scholar
Heim, S, Mitelman, F. Primary chromosome abnormalities in human neoplasia. Adv Cancer Res. 1989;52:143.Google Scholar
Dohner, H, Estey, E, Grimwade, D, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129:424–47.Google Scholar
Hunger, SP, Mullighan, CG. Redefining ALL classification: toward detecting high-risk ALL and implementing precision medicine. Blood. 2015;125:3977–87.Google Scholar
Vujkovic, M, Attiyeh, EF, Ries, RE, et al. Genomic architecture and treatment outcome in pediatric acute myeloid leukemia: a Children’s Oncology Group report. Blood. 2017;129:3051–8.Google Scholar
Greenberg, PL, Tuechler, H, Schanz, J, et al. Revised international prognostic scoring system for myelodysplastic syndromes. Blood. 2012;120:2454–65.Google Scholar
Dou, H, Chen, X, Huang, Y, et al. Prognostic significance of P2RY8-CRLF2 and CRLF2 overexpression may vary across risk subgroups of childhood B-cell acute lymphoblastic leukemia. Genes Chromosomes Cancer. 2017;56:135–46.Google Scholar
Lange, BJ, Kobrinsky, N, Barnard, DR, et al. Distinctive demography, biology, and outcome of acute myeloid leukemia and myelodysplastic syndrome in children with Down syndrome: Children’s Cancer Group Studies 2861 and 2891. Blood. 1998;91:608–15.Google Scholar
Choi, SE, Hong, SW, Yoon, SO. Proposal of an appropriate decalcification method of bone marrow biopsy specimens in the era of expanding genetic molecular study. J Pathol Transl Med. 2015;49:236–42.Google Scholar
Al Hinai, ASA, Grob, T, Kavelaars, FG, et al. Archived bone marrow smears are an excellent source for NGS-based mutation detection in acute myeloid leukemia. Leukemia. 2020;34:2220–4.Google Scholar
Czuchlewski, DR, Peterson, LC. Myeloid neoplasms with germline predisposition: a new provisional entity within the World Health Organization classification. Surg Pathol Clin. 2016;9:165–76.Google Scholar
Chaudhary, G, Dogra, TD, Raina, A. Evaluation of blood, buccal swabs, and hair follicles for DNA profiling technique using STR markers. Croat Med J. 2015;56:239–45.Google Scholar
Preuner, S, Danzer, M, Pröll, J, et al. High-quality DNA from fingernails for genetic analysis. J Mol Diagn. 2014;16:459–66.Google Scholar
Murphy, KM, Levis, M, Hafez, MJ, et al. Detection of FLT3 internal tandem duplication and D835 mutations by a multiplex polymerase chain reaction and capillary electrophoresis assay. J Mol Diagn. 2003;5(2):96102.Google Scholar
`National Comprehensive Cancer Network. NCCN clinical practice guidelines in oncology: acute myeloid leukemia. Version 3. 2021.Google Scholar
`Tozzo, P, Delicati, A, Zambello, R, et al. Chimerism monitoring techniques after hematopoietic stem cell transplantation: an overview of the last 15 years of innovations. Diagnostics (Basel). 2021;11:621.Google Scholar
Sanger, F, Nicklen, S, Coulson, AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA. 1977;74:5463–7.Google Scholar
Liu, W, Saint, DA. A new quantitative method of real time reverse transcription polymerase chain reaction assay based on simulation of polymerase chain reaction kinetics. Anal Biochem. 2002;302:52–9.Google Scholar
Schuurhuis, GJ, Heuser, M, Freeman, S, et al. Minimal/measurable residual disease in AML: a consensus document from the European Leukemia Net MRD Working Party. Blood. 2018;131:1275–91.Google Scholar
Hughes, T, Deininger, M, Hochhaus, A, et al. Monitoring CML patients responding to treatment with tyrosine kinase inhibitors: review and recommendations for harmonizing current methodology for detecting BCR-ABL transcripts and kinase domain mutations and for expressing results. Blood. 2006;108:2837.Google Scholar
National Comprehensive Cancer Network. NCCN clinical practice guidelines in oncology: chronic myelogenous leukemia. Version 3. 2020.Google Scholar
Bentley, DR, Balasubramanian, S, Swerdlow, HP, et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature. 2008;456:53–9.Google Scholar
Zheng, Z, Liebers, M, Zhelyazkova, B, et al. Anchored multiplex PCR for targeted next-generation sequencing. Nat Med. 2014;20:1479–84.Google Scholar
van Dongen, JJ, Langerak, AW, Brüggemann, M, et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia. 2003;17:2257–317.Google Scholar
van der Velden, VH, van Dongen, JJ. MRD detection in acute lymphoblastic leukemia patients using Ig/TCR gene rearrangements as targets for real-time quantitative PCR. Methods Mol Biol. 2009;538:115–50.Google Scholar
Mahe, E, Pugh, T, Kamel-Reid, S. T cell clonality assessment: past, present and future. J Clin Pathol. 2018;71:195200.Google Scholar
Medina, A, Puig, N, Flores-Montero, J, et al. Comparison of next-generation sequencing (NGS) and next-generation flow (NGF) for minimal residual disease (MRD) assessment in multiple myeloma. Blood Cancer J. 2020;10:108.Google Scholar
Schmitt, MW, Kennedy, SR, Salk, JJ, et al. Detection of ultra-rare mutations by next-generation sequencing. Proc Natl Acad Sci USA. 2012;109:14508–13.Google Scholar
Yoest, JM, Shirai, CL, Duncavage, EJ. Sequencing-based measurable residual disease testing in acute myeloid leukemia. Front Cell Dev Biol. 2020;8:249.Google Scholar
Quan, PL, Sauzade, M, Brouzes, E. dPCR: a technology review. Sensors (Basel). 2018;18:1271.Google Scholar
Pettersson, L, Alm, JS, Almstedt, A, et al. Comparison of RNA- and DNA-based methods for measurable residual disease analysis in NPM1-mutated acute myeloid leukemia. Int J Lab Hematol. 2021;43:664–74.Google Scholar

References

Swerdlow, S, Campo, E, Harris, N, et al., eds. WHO classification of tumors of haematopoietic and lymphoid tissues. Rev. 4th ed. Lyon, France: IARC Press; 2017.Google Scholar
Chan, RJ, Cooper, T, Kratz, CP, et al. Juvenile myelomonocytic leukemia: a report from the 2nd International JMML Symposium. Leuk Res. 2009;33(3):355–62. doi: 10.1016/j.leukres.2008.08.022Google Scholar
Loh, ML, Sakai, DS, Flotho, C, et al. Mutations in CBL occur frequently in juvenile myelomonocytic leukemia. Blood. 2009;114(9):1859–63. doi: 10.1182/blood-2009-01-198416Google Scholar
Niemeyer, CM, Arico, M, Basso, G, et al. Chronic myelomonocytic leukemia in childhood: a retrospective analysis of 110 cases. European Working Group on Myelodysplastic Syndromes in Childhood (EWOG-MDS). Blood. 1997;89(10):3534–43.Google Scholar
Luna-Fineman, S, Shannon, KM, Atwater, SK, et al. Myelodysplastic and myeloproliferative disorders of childhood: a study of 167 patients. Blood. 1999;93(2):459–66.Google Scholar
Gupta, AK, Meena, JP, Chopra, A, et al. Juvenile myelomonocytic leukemia – a comprehensive review and recent advances in management. Am J Blood Res. 2021;11(1):121.Google Scholar
Aricò, M, Biondi, A, Pui, CH. Juvenile myelomonocytic leukemia. Blood. 1997;90(2):479–88.Google Scholar
Aalbers, AM, van den Heuvel-Eibrink, MM, de Haas, V, et al. Applicability of a reproducible flow cytometry scoring system in the diagnosis of refractory cytopenia of childhood. Leukemia. 2013;27(9):1923–5. doi: 10.1038/leu.2013.81Google Scholar
Emanuel, PD, Bates, LJ, Zhu, SW, et al. The role of monocyte-derived hemopoietic growth factors in the regulation of myeloproliferation in juvenile chronic myelogenous leukemia. Exp Hematol. 1991;19(10):1017–24.Google Scholar
Loh, ML, Vattikuti, S, Schubbert, S, et al. Mutations in PTPN11 implicate the SHP-2 phosphatase in leukemogenesis. Blood. 2004;103(6):2325–31. doi: 10.1182/blood-2003-09-3287Google Scholar
Stieglitz, E, Taylor-Weiner, AN, Chang, TY, et al. The genomic landscape of juvenile myelomonocytic leukemia. Nat Genet. 2015;47(11):1326–33. doi: 10.1038/ng.3400Google Scholar
Niemeyer, CM, Kang, MW, Shin, DH, et al. Germline CBL mutations cause developmental abnormalities and predispose to juvenile myelomonocytic leukemia. Nat Genet. 2010;42(9):794800. doi: 10.1038/ng.641Google Scholar
Tartaglia, M, Mehler, EL, Goldberg, R, et al. Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nat Genet. 2001;29(4):465–8. doi: 10.1038/ng772Google Scholar
Tartaglia, M, Pennacchio, LA, Zhao, C, et al. Gain-of-function SOS1 mutations cause a distinctive form of Noonan syndrome. Nat Genet. 2007;39(1):75–9. doi: 10.1038/ng1939Google Scholar
Schubbert, S, Zenker, M, Rowe, SL, et al. Germline KRAS mutations cause Noonan syndrome. Nat Genet. Mar 2006;38(3):331–6. doi: 10.1038/ng1748Google Scholar
Pandit, B, Sarkozy, A, Pennacchio, LA, et al. Gain-of-function RAF1 mutations cause Noonan and LEOPARD syndromes with hypertrophic cardiomyopathy. Nat Genet. 2007;39(8):1007–12. doi: 10.1038/ng2073Google Scholar
Caye, A, Strullu, M, Guidez, F, et al. Juvenile myelomonocytic leukemia displays mutations in components of the RAS pathway and the PRC2 network. Nat Genet. 2015;47(11):1334–40. doi: 10.1038/ng.3420Google Scholar
Sakaguchi, H, Okuno, Y, Muramatsu, H, et al. Exome sequencing identifies secondary mutations of SETBP1 and JAK3 in juvenile myelomonocytic leukemia. Nat Genet. 2013;45(8):937–41. doi: 10.1038/ng.2698Google Scholar
Nucera, S, Fazio, G, Piazza, R, et al. Germ-line TP53 mutation in an adolescent with CMML/atypical CML and familiar cancer predisposition. Hemasphere. 2020;4(5):e460. doi: 10.1097/HS9.0000000000000460Google Scholar
Patnaik, MM, Tefferi, A. Chronic myelomonocytic leukemia: 2020 update on diagnosis, risk stratification and management. Am J Hematol. 2020;95(1):97115. doi: 10.1002/ajh.25684Google Scholar
Federmann, B, Abele, M, Rosero Cuesta, DS, et al. The detection of SRSF2 mutations in routinely processed bone marrow biopsies is useful in the diagnosis of chronic myelomonocytic leukemia. Hum Pathol. 2014;45(12):2471–9. doi: 10.1016/j.humpath.2014.08.014Google Scholar
Meggendorfer, M, Roller, A, Haferlach, T, et al. SRSF2 mutations in 275 cases with chronic myelomonocytic leukemia (CMML). Blood. 2012;120(15):3080–8. doi: 10.1182/blood-2012-01-404863Google Scholar
Patnaik, MM, Itzykson, R, Lasho, TL, et al. ASXL1 and SETBP1 mutations and their prognostic contribution in chronic myelomonocytic leukemia: a two-center study of 466 patients. Leukemia. 2014;28(11):2206–12. doi: 10.1038/leu.2014.125Google Scholar
Breccia, M, Biondo, F, Latagliata, R, et al. Identification of risk factors in atypical chronic myeloid leukemia. Haematologica. 2006;91(11):1566–8.Google Scholar
Wang, SA, Hasserjian, RP, Fox, PS, et al. Atypical chronic myeloid leukemia is clinically distinct from unclassifiable myelodysplastic/myeloproliferative neoplasms. Blood. 2014;123(17):2645–51. doi: 10.1182/blood-2014-02-553800Google Scholar
Melo, JV, Myint, H, Galton, DA, et al. P190BCR-ABL chronic myeloid leukaemia: the missing link with chronic myelomonocytic leukaemia? Leukemia. 1994;8(1):208–11.Google Scholar
Borkhardt, A, Bojesen, S, Haas, OA, et al. The human GRAF gene is fused to MLL in a unique t(5;11)(q31;q23) and both alleles are disrupted in three cases of myelodysplastic syndrome/acute myeloid leukemia with a deletion 5q. Proc Natl Acad Sci USA. 2000;97(16):9168–73. doi: 10.1073/pnas.150079597Google Scholar
Janik-Moszant, A, Barć-Czarnecka, M, van der Burg, M, et al. Concomitant EBV-related B-cell proliferation and juvenile myelomonocytic leukemia in a 2-year-old child. Leuk Res. Jan 2008;32(1):181–4. doi: 10.1016/j.leukres.2007.05.017Google Scholar
Lorenzana, A, Lyons, H, Sawaf, H, et al. Human herpesvirus 6 infection mimicking juvenile myelomonocytic leukemia in an infant. J Pediatr Hematol Oncol. 2002;24(2):136–41. doi: 10.1097/00043426-200202000-00016Google Scholar
Strauss, A, Furlan, I, Steinmann, S, et al. Unmistakable morphology? Infantile malignant osteopetrosis resembling juvenile myelomonocytic leukemia in infants. J Pediatr. 2015;167(2):486–8. doi: 10.1016/j.jpeds.2015.04.064Google Scholar

References

Swerdlow, S, Campo, E, Harris, N, et al., eds. WHO classification of tumors of haematopoietic and lymphoid tissues. Rev. 4th ed. IARC Press; 2017.Google Scholar
Klion, AD, Robyn, J, Akin, C, et al. Molecular remission and reversal of myelofibrosis in response to imatinib mesylate treatment in patients with the myeloproliferative variant of hypereosinophilic syndrome. Blood. 2004;103(2):473–8. doi: 10.1182/blood-2003-08-2798Google Scholar
Dalal, BI, Horsman, DE, Bruyèrè, H, et al. Imatinib mesylate responsiveness in aggressive systemic mastocytosis: novel association with a platelet derived growth factor receptor beta mutation. Am J Hematol. 2007;82(1):77–9. doi: 10.1002/ajh.20833Google Scholar
Bain, BJ, Fletcher, SH. Chronic eosinophilic leukemias and the myeloproliferative variant of the hypereosinophilic syndrome. Immunol Allergy Clin North Am. 2007;27(3):377–88. doi: 10.1016/j.iac.2007.06.001Google Scholar
Vandenberghe, P, Wlodarska, I, Michaux, L, et al. Clinical and molecular features of FIP1L1-PDFGRA (+) chronic eosinophilic leukemias. Leukemia. 2004;18(4):734–42. doi: 10.1038/sj.leu.2403313Google Scholar
Naymagon, L, Marcellino, B, Mascarenhas, J. Eosinophilia in acute myeloid leukemia: Overlooked and underexamined. Blood Rev. 2019;36:2331. doi: 10.1016/j.blre.2019.03.007Google Scholar
Fournier, B, Balducci, E, Duployez, N, et al. B-ALL with t(5;14)(q31;q32). Front Oncol. 2019;9:1374. doi: 10.3389/fonc.2019.01374Google Scholar
Klion, AD, Law, MA, Riemenschneider, W, et al. Familial eosinophilia: a benign disorder? Blood. 2004;103(11):4050–5. doi: 10.1182/blood-2003-11-3850Google Scholar
Reiter, A, Gotlib, J. Myeloid neoplasms with eosinophilia. Blood. 2017;129(6):704714. doi: 10.1182/blood-2016-10-695973Google Scholar
Rumi, E, Milosevic, JD, Selleslag, D, et al. Efficacy of ruxolitinib in myeloid neoplasms with PCM1-JAK2 fusion gene. Ann Hematol. 2015;94(11):1927–8. doi: 10.1007/s00277-015-2451-7Google Scholar
Lierman, E, Selleslag, D, Smits, S, et al. Ruxolitinib inhibits transforming JAK2 fusion proteins in vitro and induces complete cytogenetic remission in t(8;9)(p22;p24)/PCM1-JAK2-positive chronic eosinophilic leukemia. Blood. 2012;120(7):1529–31. doi: 10.1182/blood-2012-06-433821Google Scholar

References

Swerdlow, S, Campo, E, Harris, N, et al., eds. WHO classification of tumors of haematopoietic and lymphoid tissues. Rev. 4th ed. IARC Press; 2017.Google Scholar
Höglund, M, Sandin, F, Simonsson, B. Epidemiology of chronic myeloid leukaemia: an update. Ann Hematol. 2015;94 Suppl 2:S241–7. doi: 10.1007/s00277-015-2314-2Google Scholar
Bleyer, A, Viny, A, Barr, R. Cancer in 15- to 29-year-olds by primary site. Oncologist. 2006;11(6):590601. doi: 10.1634/theoncologist.11-6-590Google Scholar
Krumbholz, M, Karl, M, Tauer, JT, et al. Genomic BCR-ABL1 breakpoints in pediatric chronic myeloid leukemia. Genes Chromosomes Cancer. 2012;51(11):1045–53. doi: 10.1002/gcc.21989Google Scholar
Millot, F, Traore, P, Guilhot, J, et al. Clinical and biological features at diagnosis in 40 children with chronic myeloid leukemia. Pediatrics. 2005;116(1):140–3. doi: 10.1542/peds.2004-2473Google Scholar
Berger, U, Maywald, O, Pfirrmann, M, et al. Gender aspects in chronic myeloid leukemia: long-term results from randomized studies. Leukemia. 2005;19(6):984–9. doi: 10.1038/sj.leu.2403756Google Scholar
Landgren, O, Goldin, LR, Kristinsson, SY, et al. Increased risks of polycythemia vera, essential thrombocythemia, and myelofibrosis among 24,577 first-degree relatives of 11,039 patients with myeloproliferative neoplasms in Sweden. Blood. 2008;112(6):2199–204. doi: 10.1182/blood-2008-03-143602Google Scholar
Hijiya, N, Millot, F, Suttorp, M. Chronic myeloid leukemia in children: clinical findings, management, and unanswered questions. Pediatr Clin North Am. 2015;62(1):107–19. doi: 10.1016/j.pcl.2014.09.008Google Scholar
Millot, F, Maledon, N, Guilhot, J, et al. Favourable outcome of de novo advanced phases of childhood chronic myeloid leukaemia. Eur J Cancer. 2019;115:1723. doi: 10.1016/j.ejca.2019.03.020Google Scholar
Cotta, CV, Bueso-Ramos, CE. New insights into the pathobiology and treatment of chronic myelogenous leukemia. Ann Diagn Pathol. 2007;11(1):6878. doi: 10.1016/j.anndiagpath.2006.12.002Google Scholar
Czader, M, Orazi, A. Acute myeloid leukemia and other types of disease progression in myeloproliferative neoplasms. Am J Clin Pathol. 2015;144(2):188206. doi: 10.1309/AJCPZQK40JOZZZCCGoogle Scholar
Hijiya, N, Schultz, KR, Metzler, M, et al. Pediatric chronic myeloid leukemia is a unique disease that requires a different approach. Blood. 2016;127(4):392–9. doi: 10.1182/blood-2015-06-648667Google Scholar
Athale, U, Hijiya, N, Patterson, BC, et al. Management of chronic myeloid leukemia in children and adolescents: recommendations from the Children’s Oncology Group CML Working Group. Pediatr Blood Cancer. 2019;66(9):e27827. doi: 10.1002/pbc.27827Google Scholar
Thompson, PA, Kantarjian, HM, Cortes, JE. Diagnosis and treatment of chronic myeloid leukemia in 2015. Mayo Clin Proc. 2015;90(10):1440–54. doi: 10.1016/j.mayocp.2015.08.010Google Scholar
Melo, JV, Myint, H, Galton, DA, et al. P190BCR-ABL chronic myeloid leukaemia: the missing link with chronic myelomonocytic leukaemia? Leukemia. 1994;8(1):208–11.Google Scholar
Koptyra, M, Falinski, R, Nowicki, MO, et al. BCR/ABL kinase induces self-mutagenesis via reactive oxygen species to encode imatinib resistance. Blood. 2006;108(1):319–27. doi: 10.1182/blood-2005-07-2815Google Scholar
Skorski, T. Oncogenic tyrosine kinases and the DNA-damage response. Nat Rev Cancer. 2002;2(5):351–60. doi: 10.1038/nrc799Google Scholar
Nowicki, MO, Falinski, R, Koptyra, M, et al. BCR/ABL oncogenic kinase promotes unfaithful repair of the reactive oxygen species-dependent DNA double-strand breaks. Blood. 2004;104(12):3746–53. doi: 10.1182/blood-2004-05-1941Google Scholar
Soverini, S, Hochhaus, A, Nicolini, FE, et al. BCR-ABL kinase domain mutation analysis in chronic myeloid leukemia patients treated with tyrosine kinase inhibitors: recommendations from an expert panel on behalf of European LeukemiaNet. Blood. 2011;118(5):1208–15. doi: 10.1182/blood-2010-12-326405Google Scholar
Prokocimer, M, Rotter, V. Structure and function of p53 in normal cells and their aberrations in cancer cells: projection on the hematologic cell lineages. Blood. 1994;84(8):2391–411.Google Scholar
Sill, H, Goldman, JM, Cross, NC. Homozygous deletions of the p16 tumor-suppressor gene are associated with lymphoid transformation of chronic myeloid leukemia. Blood. Apr 15 1995;85(8):2013–6.Google Scholar
Grossmann, V, Kohlmann, A, Zenger, M, et al. A deep-sequencing study of chronic myeloid leukemia patients in blast crisis (BC-CML) detects mutations in 76.9% of cases. Leukemia. 2011;25(3):557–60. doi: 10.1038/leu.2010.298Google Scholar
Ernst, T, Busch, M, Rinke, J, et al. Frequent ASXL1 mutations in children and young adults with chronic myeloid leukemia. Leukemia. 2018;32(9):20462049. doi: 10.1038/s41375-018-0157-2Google Scholar
Berger, R. Differences between blastic chronic myeloid leukemia and Ph-positive acute leukemia. Leuk Lymphoma. 1993;11 Suppl 1:235–7. doi: 10.3109/10428199309047892Google Scholar
Uygun, V, Daloğlu, H, Öztürkmen, S, et al. Chronic neutrophilic leukemia, an extremely rare cause of neutrophilia in childhood: cure with hematopoietic stem cell transplantation. Pediatr Transplant. 2018;22(5):e13199. doi: 10.1111/petr.13199Google Scholar
Böhm, J, Schaefer, HE. Chronic neutrophilic leukaemia: 14 new cases of an uncommon myeloproliferative disease. J Clin Pathol. 2002;55(11):862–4. doi: 10.1136/jcp.55.11.862Google Scholar
Hehlmann, R. CML – where do we stand in 2015? Ann Hematol. 2015;94 Suppl 2:S103–5. doi: 10.1007/s00277-015-2331-1Google Scholar
Hehlmann, R. How I treat CML blast crisis. Blood. 2012;120(4):737–47. doi: 10.1182/blood-2012-03-380147Google Scholar
Osgood, EE. Polycythemia vera: age relationships and survival. Blood. 1965;26:243–56.Google Scholar
Cario, H, McMullin, MF, Pahl, HL. Clinical and hematological presentation of children and adolescents with polycythemia vera. Ann Hematol. 2009;88(8):713–9. doi: 10.1007/s00277-009-0758-yGoogle Scholar
Rumi, E. Familial chronic myeloproliferative disorders: the state of the art. Hematol Oncol. 2008;26(3):131–8. doi: 10.1002/hon.863Google Scholar
Cario, H, Schwarz, K, Herter, JM, et al. Clinical and molecular characterisation of a prospectively collected cohort of children and adolescents with polycythemia vera. Br J Haematol. 2008;142(4):622–6. doi: 10.1111/j.1365-2141.2008.07220.xGoogle Scholar
Najean, Y, Mugnier, P, Dresch, C, et al. Polycythaemia vera in young people: an analysis of 58 cases diagnosed before 40 years. Br J Haematol. 1987;67(3):285–91. doi: 10.1111/j.1365-2141.1987.tb02349.xGoogle Scholar
Heilmann, E, Klein, CE, Beck, JD. Primary polycythaemia in childhood and adolescence. Folia Haematol Int Mag Klin Morphol Blutforsch. 1983;110(6):935–41.Google Scholar
Barbui, T, Carobbio, A, Rambaldi, A, et al. Perspectives on thrombosis in essential thrombocythemia and polycythemia vera: is leukocytosis a causative factor? Blood. 2009;114(4):759–63. doi: 10.1182/blood-2009-02-206797Google Scholar
Teofili, L, Giona, F, Martini, M, et al. The revised WHO diagnostic criteria for Ph-negative myeloproliferative diseases are not appropriate for the diagnostic screening of childhood polycythemia vera and essential thrombocythemia. Blood. 2007;110(9):3384–6. doi: 10.1182/blood-2007-06-094276Google Scholar
Tefferi, A. JAK2 mutations in polycythemia vera – molecular mechanisms and clinical applications. N Engl J Med. 2007;356(5):444–5. doi: 10.1056/NEJMp068293Google Scholar
Andrieux, JL, Demory, JL. Karyotype and molecular cytogenetic studies in polycythemia vera. Curr Hematol Rep. 2005;4(3):224–9.Google Scholar
Adam, MP, Mirzaa, GM, Pagon, RA, et al. GeneReviews. University of Washington. 19932022.Google Scholar
Ladroue, C, Carcenac, R, Leporrier, M, et al. PHD2 mutation and congenital erythrocytosis with paraganglioma. N Engl J Med. 2008;359(25):2685–92. doi: 10.1056/NEJMoa0806277Google Scholar
Percy, MJ, Furlow, PW, Lucas, GS, et al. A gain-of-function mutation in the HIF2A gene in familial erythrocytosis. N Engl J Med. 2008;358(2):162–8. doi: 10.1056/NEJMoa073123Google Scholar
Percy, MJ, Beer, PA, Campbell, G, et al. Novel exon 12 mutations in the HIF2A gene associated with erythrocytosis. Blood. 2008;111(11):5400–2. doi: 10.1182/blood-2008-02-137703Google Scholar
Prchal, JT, Gregg, XT. Red cell enzymes. Hematology Am Soc Hematol Educ Program. 2005:1923. doi: 10.1182/asheducation-2005.1.19Google Scholar
Passamonti, F, Malabarba, L, Orlandi, E, et al. Polycythemia vera in young patients: a study on the long-term risk of thrombosis, myelofibrosis and leukemia. Haematologica. 2003;88(1):13–8.Google Scholar
Marchioli, R, Finazzi, G, Landolfi, R, et al. Vascular and neoplastic risk in a large cohort of patients with polycythemia vera. J Clin Oncol. 2005;23(10):2224–32. doi: 10.1200/JCO.2005.07.062Google Scholar
Marchioli, R, Finazzi, G, Specchia, G, et al. Cardiovascular events and intensity of treatment in polycythemia vera. N Engl J Med. 2013;368(1):2233. doi: 10.1056/NEJMoa1208500Google Scholar
Passamonti, F, Rumi, E, Arcaini, L, et al. Leukemic transformation of polycythemia vera: a single center study of 23 patients. Cancer. 2005;104(5):1032–6. doi: 10.1002/cncr.21297Google Scholar
Ianotto, JC, Curto-Garcia, N, Lauermanova, M, et al. Characteristics and outcomes of patients with essential thrombocythemia or polycythemia vera diagnosed before 20 years of age: a systematic review. Haematologica. 2019;104(8):1580–8. doi: 10.3324/haematol.2018.200832Google Scholar
Hasle, H. Incidence of essential thrombocythaemia in children. Br J Haematol. 2000;110(3):751. doi: 10.1046/j.1365-2141.2000.02239-7.xGoogle Scholar
Giona, F, Teofili, L, Moleti, ML, et al. Thrombocythemia and polycythemia in patients younger than 20 years at diagnosis: clinical and biologic features, treatment, and long-term outcome. Blood. 2012;119(10):2219–27. doi: 10.1182/blood-2011-08-371328Google Scholar
Hong, WJ, Gotlib, J. Hereditary erythrocytosis, thrombocytosis and neutrophilia. Best Pract Res Clin Haematol. 2014;27(2):95106. doi: 10.1016/j.beha.2014.07.002Google Scholar
Yang, RC, Qian, LS. Essential thrombocythaemia in children: a report of nine cases. Br J Haematol. 2000;110(4):1009–10. doi: 10.1046/j.1365-2141.2000.02270-7.xGoogle Scholar
Randi, ML, Putti, MC, Scapin, M, et al. Pediatric patients with essential thrombocythemia are mostly polyclonal and V617FJAK2 negative. Blood. 2006;108(10):3600–2. doi: 10.1182/blood-2006-04-014746Google Scholar
Nakatani, T, Imamura, T, Ishida, H, et al. Frequency and clinical features of the JAK2 V617F mutation in pediatric patients with sporadic essential thrombocythemia. Pediatr Blood Cancer. 2008;51(6):802–5. doi: 10.1002/pbc.21730Google Scholar
Fu, R, Zhang, L, Yang, R. Paediatric essential thrombocythaemia: clinical and molecular features, diagnosis and treatment. Br J Haematol. Nov 2013;163(3):295302. doi: 10.1111/bjh.12530Google Scholar
Randi, ML, Putti, MC, Pacquola, E, et al. Normal thrombopoietin and its receptor (c-MPL) genes in children with essential thrombocythemia. Pediatr Blood Cancer. 2005;44(1):4750. doi: 10.1002/pbc.20185Google Scholar
Hofmann, I. Myeloproliferative neoplasms in children. J Hematop. 2015;8(3):143157. doi: 10.1007/s12308-015-0256-1Google Scholar
Wilkins, BS, Erber, WN, Bareford, D, et al. Bone marrow pathology in essential thrombocythemia: interobserver reliability and utility for identifying disease subtypes. Blood. 2008;111(1):6070. doi: 10.1182/blood-2007-05-091850Google Scholar
Tefferi, A, Barbui, T. Polycythemia vera and essential thrombocythemia: 2021 update on diagnosis, risk-stratification and management. Am J Hematol. 12 2020;95(12):1599–613. doi: 10.1002/ajh.26008Google Scholar
Kucine, N. Myeloproliferative neoplasms in children, adolescents, and young adults. Curr Hematol Malig Rep. 2020;15(2):141–8. doi: 10.1007/s11899-020-00571-8Google Scholar
Kucine, N, Viny, AD, Rampal, R, et al. Genetic analysis of five children with essential thrombocytosis identified mutations in cancer-associated genes with roles in transcriptional regulation. Haematologica. 2016;101(6):e237–9. doi: 10.3324/haematol.2016.142935Google Scholar
Kucine, N, Chastain, KM, Mahler, MB, et al. Primary thrombocytosis in children. Haematologica. 2014;99(4):620–8. doi: 10.3324/haematol.2013.092684Google Scholar
Randi, ML, Geranio, G, Bertozzi, I, et al. Are all cases of paediatric essential thrombocythaemia really myeloproliferative neoplasms? Analysis of a large cohort. Br J Haematol. 2015;169(4):584–9. doi: 10.1111/bjh.13329Google Scholar
DeLario, MR, Sheehan, AM, Ataya, R, et al. Clinical, histopathologic, and genetic features of pediatric primary myelofibrosis – an entity different from adults. Am J Hematol. 2012;87(5):461–4. doi: 10.1002/ajh.23140Google Scholar
Sheikha, A. Fatal familial infantile myelofibrosis. J Pediatr Hematol Oncol. 2004;26(3):164–8. doi: 10.1097/00043426-200403000-00005Google Scholar
Sieff, CA, Malleson, P. Familial myelofibrosis. Arch Dis Child. 1980;55(11):888–93. doi: 10.1136/adc.55.11.888Google Scholar
Dema, S, Lazar, F, Barna, R, et al. Sclerosing extramedullary hematopoietic tumor (SEHT) mimicking a malignant bile duct tumor – case report and literature review. Medicina (Kaunas). 2021;57(8):824. doi: 10.3390/medicina57080824Google Scholar
Mishra, P, Halder, R, Aggarwal, M, et al. Pediatric myelofibrosis: WHO 2024 update on myeloproliferative neoplasms calling? Pediatr Blood Cancer. 2020;67(5):e28232. doi: 10.1002/pbc.28232Google Scholar
An, W, Wan, Y, Guo, Y, et al. CALR mutation screening in pediatric primary myelofibrosis. Pediatr Blood Cancer. 2014;61(12):2256–62. doi: 10.1002/pbc.25211Google Scholar
Stepensky, P, Saada, A, Cowan, M, et al. The Thr224Asn mutation in the VPS45 gene is associated with the congenital neutropenia and primary myelofibrosis of infancy. Blood. 2013;121(25):5078–87. doi: 10.1182/blood-2012-12-475566Google Scholar
Vilboux, T, Lev, A, Malicdan, MC, et al. A congenital neutrophil defect syndrome associated with mutations in VPS45. N Engl J Med. Jul 04 2013;369(1):5465. doi: 10.1056/NEJMoa1301296Google Scholar
Altura, RA, Head, DR, Wang, WC. Long-term survival of infants with idiopathic myelofibrosis. Br J Haematol. 2000;109(2):459–62. doi: 10.1046/j.1365-2141.2000.01977.xGoogle Scholar
Sah, A, Minford, A, Parapia, LA. Spontaneous remission of juvenile idiopathic myelofibrosis. Br J Haematol. 2001;112(4):1083. doi: 10.1046/j.1365-2141.2001.02622.xGoogle Scholar
Lau, SO, Ramsay, NK, Smith, CM, et al. Spontaneous resolution of severe childhood myelofibrosis. J Pediatr. 1981;98(4):585–8. doi: 10.1016/s0022-3476(81)80769-xGoogle Scholar
Druhan, LJ, McMahon, DP, Steuerwald, N, et al. Chronic neutrophilic leukemia in a child with a CSF3R T618I germ line mutation. Blood. 2016;128(16):2097–9. doi: 10.1182/blood-2016-07-730606Google Scholar
Elliott, MA, Hanson, CA, Dewald, GW, et al. WHO-defined chronic neutrophilic leukemia: a long-term analysis of 12 cases and a critical review of the literature. Leukemia. 2005;19(2):313–7. doi: 10.1038/sj.leu.2403562Google Scholar
Plo, I, Zhang, Y, Le Couédic, JP, et al. An activating mutation in the CSF3R gene induces a hereditary chronic neutrophilia. J Exp Med. 2009;206(8):1701–7. doi: 10.1084/jem.20090693Google Scholar
Duployez, N, Willekens, C, Plo, I, et al. Inherited transmission of the CSF3R T618I mutational hotspot in familial chronic neutrophilic leukemia. Blood. 2019;134(26):2414–6. doi: 10.1182/blood.2019003206Google Scholar
Maxson, JE, Gotlib, J, Pollyea, DA, et al. Oncogenic CSF3R mutations in chronic neutrophilic leukemia and atypical CML. N Engl J Med. 2013;368(19):1781–90. doi: 10.1056/NEJMoa1214514Google Scholar

References

Hasle, H, Niemeyer, CM, Chessells, JM, et al. A pediatric approach to the WHO classification of myelodysplastic and myeloproliferative diseases. Leukemia. 2003;17(2):277–82. doi: 10.1038/sj.leu.2402765Google Scholar
Hasle, H, Niemeyer, CM. Advances in the prognostication and management of advanced MDS in children. Br J Haematol. 2011;154(2):185–95. doi: 10.1111/j.1365-2141.2011.08724.xGoogle Scholar
Kardos, G, Baumann, I, Passmore, SJ, et al. Refractory anemia in childhood: a retrospective analysis of 67 patients with particular reference to monosomy 7. Blood. 2003;102(6):19972003. doi: 10.1182/blood-2002-11-3444Google Scholar
Swerdlow, S, Campo, E, Harris, N, et al., eds. WHO classification of tumors of haematopoietic and lymphoid tissues. Rev. 4th ed. IARC Press; 2017.Google Scholar
Rau, AT, Shreedhara, AK, Kumar, S. Myelodysplastic syndromes in children: where are we today? Ochsner J. 2012;12(3):216–20.Google Scholar
Polychronopoulou, S, Panagiotou, JP, Kossiva, L, et al. Clinical and morphological features of paediatric myelodysplastic syndromes: a review of 34 cases. Acta Paediatr. 2004;93(8):1015–23. doi: 10.1111/j.1651-2227.2004.tb02708.xGoogle Scholar
Hofmann, I. Pediatric myelodysplastic syndromes. J Hematopathology. 2015;8:127–41.Google Scholar
Fleming, MD. Congenital sideroblastic anemias: iron and heme lost in mitochondrial translation. Hematology Am Soc Hematol Educ Program. 2011;2011:525–31. doi: 10.1182/asheducation-2011.1.525Google Scholar
Westers, TM, Ireland, R, Kern, W, et al. Standardization of flow cytometry in myelodysplastic syndromes: a report from an international consortium and the European LeukemiaNet Working Group. Leukemia. 2012;26(7):1730–41. doi: 10.1038/leu.2012.30Google Scholar
Ogata, K, Della Porta, MG, Malcovati, L, et al. Diagnostic utility of flow cytometry in low-grade myelodysplastic syndromes: a prospective validation study. Haematologica. 2009;94(8):1066–74. doi: 10.3324/haematol.2009.008532Google Scholar
Porwit, A, van de Loosdrecht, AA, Bettelheim, P, et al. Revisiting guidelines for integration of flow cytometry results in the WHO classification of myelodysplastic syndromes-proposal from the International/European LeukemiaNet Working Group for Flow Cytometry in MDS. Leukemia. 2014;28(9):1793–8. doi: 10.1038/leu.2014.191Google Scholar
Aalbers, AM, van den Heuvel-Eibrink, MM, de Haas, V, et al. Applicability of a reproducible flow cytometry scoring system in the diagnosis of refractory cytopenia of childhood. Leukemia. 2013;27(9):1923–5. doi: 10.1038/leu.2013.81Google Scholar
Sperling, AS, Gibson, CJ, Ebert, BL. The genetics of myelodysplastic syndrome: from clonal haematopoiesis to secondary leukaemia. Nat Rev Cancer. 2017;17(1):519. doi: 10.1038/nrc.2016.112Google Scholar
Nazha, A, Seastone, D, Radivoyevitch, T, et al. Genomic patterns associated with hypoplastic compared to hyperplastic myelodysplastic syndromes. Haematologica. 2015;100(11):e434–7. doi: 10.3324/haematol.2015.130112Google Scholar
Schwartz, JR, Ma, J, Lamprecht, T, et al. The genomic landscape of pediatric myelodysplastic syndromes. Nat Commun. 2017;8(1):1557. doi: 10.1038/s41467-017-01590-5Google Scholar
Pastor, V, Hirabayashi, S, Karow, A, et al. Mutational landscape in children with myelodysplastic syndromes is distinct from adults: specific somatic drivers and novel germline variants. Leukemia. 2017;31(3):759762. doi: 10.1038/leu.2016.342Google Scholar
Hirabayashi, S, Flotho, C, Moetter, J, et al. Spliceosomal gene aberrations are rare, coexist with oncogenic mutations, and are unlikely to exert a driver effect in childhood MDS and JMML. Blood. 2012;119(11):e96–9. doi: 10.1182/blood-2011-12-395087Google Scholar
Mikhailova, N, Sessarego, M, Fugazza, G, et al. Cytogenetic abnormalities in patients with severe aplastic anemia. Haematologica. 1996;81(5):418–22.Google Scholar
Dolan, MM, Singleton, TP, Neglia, J, et al. Aplastic anemia and monosomy 7-associated dysmegakaryocytopoiesis. Am J Clin Pathol. 2006;126(6):925–30. doi: 10.1309/50GWDKVWU3VWL5XWGoogle Scholar
Göhring, G, Michalova, K, Beverloo, HB, et al. Complex karyotype newly defined: the strongest prognostic factor in advanced childhood myelodysplastic syndrome. Blood. 2010;116(19):3766–9. doi: 10.1182/blood-2010-04-280313Google Scholar
Woodard, P, Carpenter, PA, Davies, SM, et al. Unrelated donor bone marrow transplantation for myelodysplastic syndrome in children. Biol Blood Marrow Transplant. 2011;17(5):723–8. doi: 10.1016/j.bbmt.2010.08.016Google Scholar
Yusuf, U, Frangoul, HA, Gooley, TA, et al. Allogeneic bone marrow transplantation in children with myelodysplastic syndrome or juvenile myelomonocytic leukemia: the Seattle experience. Bone Marrow Transplant. 2004;33(8):805–14. doi: 10.1038/sj.bmt.1704438Google Scholar
Bejar, R, Stevenson, K, Abdel-Wahab, O, et al. Clinical effect of point mutations in myelodysplastic syndromes. N Engl J Med. 2011;364(26):2496–506. doi: 10.1056/NEJMoa1013343Google Scholar

References

Arber, DA. Acute myeloid leukemia. In: Elaine, SJ, Arber, DA, Campo, E, et al., eds. Hematopathology, 2nd ed. Philadelphia, PA: Elsevier; 2017:817–45.Google Scholar
Arber, DA, Brunning, RD, Orazi, A, et al. Acute myeloid leukaemia, not otherwise specified. In: Swerdlow, SH, Campo, E, Harris, NL, et al., eds. WHO classification of tumours of haematopoietic and lymphoid tissues, rev. 4th ed. Lyon, France: IARC Press; 2017:156–66.Google Scholar
Puumala, SE, Ross, JA, Aplenc, R, et al. Epidemiology of childhood acute myeloid leukemia. Pediatr Blood Cancer. 2013;60:728–33.Google Scholar
Lorsbach, RB. Acute myeloid leukemia and related precursor neoplasms. In: Proytcheva, MA, ed. Diagnostic pediatric hematopathology. Cambridge, UK: Cambridge University Press; 2011:272309.Google Scholar
Swerdlow, SH, Campo, E, Harris, NL, et al. Acute myeloid leukaemia and related precursor neoplasms. In: Swerdlow, SH, Campo, E, Harris, NL, et al., eds. WHO classification of tumours of haematopoietic and lymphoid tissues, 4th ed. Lyon, France: IARC Press; 2008:109–47.Google Scholar
Swerdlow, SH, Campo, E, Harris, NL, et al. Acute myeloid leukaemia and related precursor neoplasms. In: Swerdlow, SH, Campo, E, Harris, NL, et al., eds. WHO classification of tumours of haematopoietic and lymphoid tissues, rev. 4th ed. Lyon, France; IARC Press; 2017:129–71.Google Scholar
Matynia, AP, Szankasi, P, Shen, W, et al. Molecular genetic biomarkers in myeloid malignancies. Arch Path Lab Med. 2015;139:594601.Google Scholar
Arber, DA, Brunning, RD, Le Beau, MM, et al. Acute myeloid leukaemia with recurrent genetic abnormalities. In: Swerdlow, SH, Campo, E, Harris, NL, et al., eds. WHO classification of tumours of haematopoietic and lymphoid tissues, rev. 4th ed. Lyon, France: IARC Press; 2017:130–49.Google Scholar
Speck, NA, Gilliland, DG. Core-binding factors in haematopoiesis and leukaemia. Nat Rev Cancer. 2002;2:502–13.Google Scholar
Raimondi, SC, Chang, MN, Ravindranath, Y, et al. Chromosomal abnormalities in 478 children with acute myeloid leukemia: clinical characteristics and treatment outcome in a cooperative pediatric oncology group study-POC8821. Blood. 1999;94:3707–16.Google Scholar
Rubnitz, JE, Raimondi, SC, Halbert, AR, et al. Characteristics and outcome of t(8;21)-positive childhood acute myeloid leukemia: a single institution’s experience. Leukemia. 2002;16;2072–7.Google Scholar
Tallman, MS, Hakimian, D, Shaw, JM, et al. Granulocytic sarcoma is associated with the 8;21 translocation in acute myeloid leukemia. J Clin Oncol. 1993;11:690–7.Google Scholar
Johnson, RC, Savage, NM, Chiang, T, et al. Hidden mastocytosis in acute myeloid leukemia with t(8;21)(q22;q22). Am J Clin Pathol. 2013;140:525–35.Google Scholar
Forestier, E and Schmiegelow, K. The incidence peaks of the childhood acute leukemias reflect specific cytogenetic aberrations. J Pediatr Hematol Oncol. 2006;28:486–95.Google Scholar
Liu, P, Tarle, SA, Hajra, et al. Fusion between transcription factor CBF beta/PEBP2 beta and a myosin heavy chain in acute myeloid leukemia. Science. 1993;261: 1041–4.Google Scholar
Gregory, J, Feusner, J. Acute promyelocytic leukemia in childhood. Curr Oncol Rep. 2009;11:439–45.Google Scholar
Zhou, Yi, Jorgensen, JL, Wang, SA, et al. Usefulness of CD11a and CD18 in flow cytometric immunophenotypic analysis for diagnosis of acute promyelocytic leukemia. Am J Clin Pathol. 2012;138:744–50.Google Scholar
Stein, E, Tallman, MS. Acute promyelocytic leukemia in children and adolescents. Acta Haematol. 2014;132:307–12.Google Scholar
Rubnitz, JE, Raimondi, SC, Tong, X, et al. Favorable impact of the t(9;11) in childhood acute myeloid leukemia. J Clin Oncol. 2002;20:2302–9.Google Scholar
Elzamly, S, Chavali, S, Tonk, V, et al. Acute myeloid leukemia with KMT2A-SEPT5 translocation: A case report and review of the literature. SAGE Open Med Case Rep. 2018;6:15.Google Scholar
Shih, LY, Liang, DC, Fu, JF, et al. Characterization of fusion partner genes in 114 patients with de novo acute myeloid leukemia and MLL rearrangement. Leukemia. 2006;20:218–23.Google Scholar
Sandahl, JD, Coenen, EA, Forestier, E, et al. t(6;9)(p22;q34)/DEK-NUP214-rearranged pediatric myeloid leukemia: an international study of 62 patients. Haematologica. 2014;99:865–72.Google Scholar
Rogers, HJ, His, ED. Myeloid neoplasms with inv(3)(q21q26.2) or t(3;3)(q21;q26.2). Surg Pathol. 2013;6:677–92.Google Scholar
Maseti, R, Guidi, V, Ronchini, L, et al. The changing scenario of non-Down syndrome acute megakaryoblastic leukemia in children. Crit Rev Oncol Hematol. 2019;138:132–8.Google Scholar
Bernstein, J, Dastugue, N, Haas, OA, et al. Nineteen cases of the t(1;22)(p13;q13) acute megakaryoblastic leukaemia of infants/children and a review of 39 cases: report from a t(1;22) study group. Leukemia. 2000;14:216–8.Google Scholar
Coenen, EA, Zwaan, CM, Reinhardt, D, et al. Pediatric acute myeloid leukemia with t(8;16)(p11;p13), a distinct clinical and biological entity: a collaborative study by the International-Berlin-Frankfurt-Münster AML-study group. Blood. 2013;122:2704–13.Google Scholar
Haferlach, T, Kohlmann, A, Klein, HU, et al. AML with translocation t(8;16)(p11;p13) demonstrates unique cytomorphological, cytogenetic, molecular and prognostic features. Leukemia. 2009;23:934–43.Google Scholar
Dempsey, N, Khushmann, M, Hosein, P, et al. Acute myeloid leukemia with translocation (8;16)(p11;p13): a distinct syndrome – case report and literature review. Oncol Cancer Case Rep. 2017;3:2.Google Scholar
Braoudaki, M, Papathanassiou, C, Katsibardi, K, et al. The frequency of NPM1 mutations in childhood acute myeloid leukemia. J Hematol Oncol. 2010;3:41.Google Scholar
Falini, B, Martelli, MP, Bolli, N, et al. Immunohistochemistry predicts nucleophosmin (NPM) mutations in acute myeloid leukemia. Blood. 2006;108:19992005.Google Scholar
Kansal, R. Classification of acute myeloid leukemia by the revised fourth edition World Health Organization criteria: a retrospective single-institution study with appraisal of the new entities of acute myeloid leukemia with gene mutations in NPM1 and biallelic CEBPA. Hum Pathol. 2019;90:8096.Google Scholar
Bacher, U, Schnittger, S, Macijewski, K, et al. Multilineage dysplasia does not influence prognosis in CEBPA-mutated AML, supporting the WHO proposal to classify these patients as a unique entity. Blood. 2012;119:4719–22.Google Scholar
Gaidzik, VI, Teleanu, V, Papaemmanuil, E. RUNX1 mutations in acute myeloid leukemia are associated with distinct clinico-pathologic and genetic features. Leukemia. 2016;30:2160–8.Google Scholar
Arber, DA, Brunning, RD, Orazi, A, et al. Acute myeloid leukaemia with myelodysplasia-related changes. In: Swerdlow, SH, Campo, E, Harris, NL, et al., eds. WHO classification of tumours of haematopoietic and lymphoid tissues, rev. 4th ed. Lyon, France: IARC Press; 2017:150–2.Google Scholar
Koenig, KL, Sahasrabudhe, KD, Sigmund, AM, et al. AML with myelodysplasia-related changes: development, challenges, and treatment advances. Genes. 2020;11:845–57.Google Scholar
Arber, DA, Erba, HP. Diagnosis and treatment of patients with acute myeloid leukemia with myelodysplasia-related changes (AML-MRC). Am J Clin Pathol. 2020;154:731–41.Google Scholar
Vardiman, JW, Arber, DA, Brunning, RD, et al. Therapy-related myeloid neoplasms. In: Swerdlow, SH, Campo, E, Harris, NL, et al., eds. WHO classification of tumours of haematopoietic and lymphoid tissues, rev. 4th ed. Lyon, France: IARC Press; 2017:153–5.Google Scholar
Wang, SA. Myelodysplastic syndromes and therapy-related myeloid neoplasms. In: Proytcheva, MA, ed. Diagnostic pediatric hematopathology. Cambridge, UK: Cambridge University Press; 2011:253–71.Google Scholar
Harada, H, Harada, Y, Tanaka, H, et al. Implications of somatic mutations in the AML1 gene in radiation-associated and therapy-related myelodysplastic syndrome/acute myeloid leukemia. Blood. 2003;101:673–80.Google Scholar
Pileri, SA, Orazi, A, Faomo, B. Myeloid sarcoma. In: Swerdlow, SH, Campo, E, Harris, NL, et al., eds. WHO classification of tumours of haematopoietic and lymphoid tissues, rev. 4th ed. Lyon, France: IARC Press; 2017:167–8.Google Scholar
Samborska, M, Derwich, K, Skalska-Sadowska, J, et al. Myeloid sarcoma in children – diagnostic and therapeutic difficulties. Contemp Oncol (Pozn). 2016;20:444–8.Google Scholar
Bhatnagar, N, Nizery, L, Tunstall, O, et al. Transient abnormal myelopoiesis and AML in Down syndrome: an update. Curr Hematol Malig Rep. 2016;11:333–41.Google Scholar
Arber, DA, Baumann, I, Niemeyer, CM, et al. Myeloid proliferations associated with Down syndrome. In: Swerdlow, SH, Campo, E, Harris, NL et al., eds. WHO classification of tumours of haematopoietic and lymphoid tissues, rev. 4th ed. Lyon, France: IARC Press; 2017:169–71.Google Scholar
Gamis, AS, Alonzo, TA, Gerbing, RB, et al. Natural history of transient myeloproliferative disorder clinically diagnosed in Down syndrome neonates: a report from the Children’s Oncology Group Study A2971. Blood. 2011;118:6752–9.Google Scholar
Choi, JK. Hematologic abnormalities in individuals with Down syndrome. In: Proytcheva, MA, ed. Diagnostic pediatric hematopathology. Cambridge, UK: Cambridge University Press; 2011:310–22.Google Scholar
Roy, A, Cowan, G, Mead, AJ, et al. Perturbation of fetal liver hematopoietic stem and progenitor cell development by trisomy 21. Proc Natl Acad Sci USA. 2012;109:17579–84.Google Scholar
Brink, DS. Transient leukemia (transient myeloproliferative disorder, transient abnormal myelopoiesis) of Down syndrome. Adv Anat Pathol. 2006;13:256–62.Google Scholar

References

Swerdlow, S, Campo, E, Harris, N, et al., eds. WHO classification of tumors of haematopoietic and lymphoid tissues. Rev. 4th ed. IARC Press; 2017.Google Scholar
Furutani, E, Shimamura, A. Genetic predisposition to MDS: diagnosis and management. Hematology Am Soc Hematol Educ Program. 2019;2019(1):110–9. doi: 10.1182/hematology.2019000021Google Scholar
Kennedy, AL, Shimamura, A. Genetic predisposition to MDS: clinical features and clonal evolution. Blood. 2019;133(10):1071–85. doi: 10.1182/blood-2018-10-844662Google Scholar
Smith, ML, Cavenagh, JD, Lister, TA, et al. Mutation of CEBPA in familial acute myeloid leukemia. N Engl J Med. 2004;351(23):2403–7. doi: 10.1056/NEJMoa041331Google Scholar
Polprasert, C, Schulze, I, Sekeres, MA, et al. Inherited and somatic defects in DDX41 in myeloid neoplasms. Cancer Cell. 2015;27(5):658–70. doi: 10.1016/j.ccell.2015.03.017Google Scholar
Lewinsohn, M, Brown, AL, Weinel, LM, et al. Novel germ line DDX41 mutations define families with a lower age of MDS/AML onset and lymphoid malignancies. Blood. 2016;127(8):1017–23. doi: 10.1182/blood-2015-10-676098Google Scholar
Schlegelberger, B, Heller, PG. RUNX1 deficiency (familial platelet disorder with predisposition to myeloid leukemia, FPDMM). Semin Hematol. 2017;54(2):7580. doi: 10.1053/j.seminhematol.2017.04.006Google Scholar
Song, WJ, Sullivan, MG, Legare, RD, et al. Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat Genet. 1999;23(2):166–75. doi: 10.1038/13793Google Scholar
Walker, LC, Stevens, J, Campbell, H, et al. A novel inherited mutation of the transcription factor RUNX1 causes thrombocytopenia and may predispose to acute myeloid leukaemia. Br J Haematol. 2002;117(4):878–81. doi: 10.1046/j.1365-2141.2002.03512.xGoogle Scholar
Chisholm, KM, Denton, C, Keel, S, et al. Bone marrow morphology associated with germline. Pediatr Dev Pathol. 2019;22(4):315–28. doi: 10.1177/1093526618822108Google Scholar
Marquez, R, Hantel, A, Lorenz, R, et al. A new family with a germline ANKRD26 mutation and predisposition to myeloid malignancies. Leuk Lymphoma. 2014;55(12):2945–6. doi: 10.3109/10428194.2014.903476Google Scholar
Di Paola, J, Porter, CC. ETV6-related thrombocytopenia and leukemia predisposition. Blood. 2019;134(8):663–7. doi: 10.1182/blood.2019852418Google Scholar
Cioc, AM, Wagner, JE, MacMillan, ML, et al. Diagnosis of myelodysplastic syndrome among a cohort of 119 patients with Fanconi anemia: morphologic and cytogenetic characteristics. Am J Clin Pathol. 2010;133(1):92100. doi: 10.1309/AJCP7W9VMJENZOVGGoogle Scholar
Cunniff, C, Bassetti, JA, Ellis, NA. Bloom’s syndrome: clinical spectrum, molecular pathogenesis, and cancer predisposition. Mol Syndromol.2017;8(1):423. doi: 10.1159/000452082Google Scholar
Myers, KC, Furutani, E, Weller, E, et al. Clinical features and outcomes of patients with Shwachman-Diamond syndrome and myelodysplastic syndrome or acute myeloid leukaemia: a multicentre, retrospective, cohort study. Lancet Haematol. 2020;7(3):e238–46. doi: 10.1016/S2352-3026(19)30206-6Google Scholar
Simkins, A, Bannon, SA, Khoury, JD, et al. Diamond-Blackfan anemia predisposing to myelodysplastic syndrome in early adulthood. JCO Precis Oncol. 2017;1:15. doi: 10.1016/S2352-3026(19)30206-6Google Scholar
Nagata, Y, Narumi, S, Guan, Y, et al. Germline loss-of-function. Blood. 2018;132(21):2309–13. doi: 10.1182/blood-2017-05-787390Google Scholar
Ripperger, T, Schlegelberger, B. Acute lymphoblastic leukemia and lymphoma in the context of constitutional mismatch repair deficiency syndrome. Eur J Med Genet. 2016;59(3):133–42. doi: 10.1016/j.ejmg.2015.12.014Google Scholar
Kirwan, M, Walne, AJ, Plagnol, V, et al. Exome sequencing identifies autosomal-dominant SRP72 mutations associated with familial aplasia and myelodysplasia. Am J Hum Genet. 2012;90(5):888–92. doi: 10.1016/j.ajhg.2012.03.020Google Scholar
Swaminathan, M, Bannon, SA, Routbort, M, et al. Hematologic malignancies and Li-Fraumeni syndrome. Cold Spring Harb Mol Case Stud. 2019;5(1):a003210. doi: 10.1101/mcs.a003210Google Scholar
Talwalkar, SS, Yin, CC, Naeem, RC, et al. Myelodysplastic syndromes arising in patients with germline TP53 mutation and Li-Fraumeni syndrome. Arch Pathol Lab Med. 2010;134(7):1010–5. doi: 10.5858/2009-0015-OA.1Google Scholar
Shabanova, I, Cohen, E, Cada, M, et al. ERCC6L2-associated inherited bone marrow failure syndrome. Mol Genet Genomic Med. 2018;6(3):463–8. doi: 10.1002/mgg3.388Google Scholar
Douglas, SPM, Siipola, P, Kovanen, PE, et al. ERCC6L2 defines a novel entity within inherited acute myeloid leukemia. Blood. 2019;133(25):2724–8. doi: 10.1182/blood-2019-01-896233Google Scholar
Ripperger, T, Hofmann, W, Koch, JC, et al.MDS1 and EVI1 complex locus (MECOM): a novel candidate gene for hereditary hematological malignancies. Haematologica. 2018;103(2):e55–8. doi: 10.3324/haematol.2017.178723Google Scholar
Rio-Machin, A, Vulliamy, T, Hug, N, et al. The complex genetic landscape of familial MDS and AML reveals pathogenic germline variants. Nat Commun. 2020;11(1):1044. doi: 10.1038/s41467-020-14829-5Google Scholar

References

Swerdlow, S, Campo, E, Harris, N, et al., eds. WHO classification of tumors of haematopoietic and lymphoid tissues. Rev. 4th ed. IARC Press; 2017.Google Scholar
Deng, W, Yang, M, Kuang, F, et al. Blastic plasmacytoid dendritic cell neoplasm in children: a review of two cases. Mol Clin Oncol. 2017;7(4):709–15. doi: 10.3892/mco.2017.1370Google Scholar
Li, Y, Sun, V, Sun, W, et al. Blastic plasmacytoid dendritic cell neoplasm in children. Hematol Oncol Clin North Am. 2020;34(3):601–12. doi: 10.1016/j.hoc.2020.01.008Google Scholar
Jegalian, AG, Buxbaum, NP, Facchetti, F, et al. Blastic plasmacytoid dendritic cell neoplasm in children: diagnostic features and clinical implications. Haematologica. 2010;95(11):1873–9. doi: 10.3324/haematol.2010.026179Google Scholar
Feuillard, J, Jacob, MC, Valensi, F, et al. Clinical and biologic features of CD4(+) CD56(+) malignancies. Blood. 2002;99(5):1556–63. doi:10.1182/blood.v99.5.1556Google Scholar
Jacob, MC, Chaperot, L, Mossuz, P, et al. CD4+ CD56+ lineage negative malignancies: a new entity developed from malignant early plasmacytoid dendritic cells. Haematologica. 2003;88(8):941–55.Google Scholar
Petrella, T, Bagot, M, Willemze, R, et al. Blastic NK-cell lymphomas (agranular CD4+ CD56+ hematodermic neoplasms): a review. Am J Clin Pathol. 2005;123(5):662–75.Google Scholar
Cota, C, Vale, E, Viana, I, et al. Cutaneous manifestations of blastic plasmacytoid dendritic cell neoplasm-morphologic and phenotypic variability in a series of 33 patients.Am J Surg Pathol. 2010;34(1):7587. doi:10.1097/PAS.0b013e3181c5e26bGoogle Scholar
Pilichowska, ME, Fleming, MD, Pinkus, JL, et al. CD4+/CD56+ hematodermic neoplasm (“blastic natural killer cell lymphoma”): neoplastic cells express the immature dendritic cell marker BDCA-2 and produce interferon. Am J Clin Pathol. 2007;128(3):445–53. doi: 10.1309/W9Q5AGYDE5LANN39Google Scholar
Urosevic, M, Conrad, C, Kamarashev, J, et al. CD4+ CD56+ hematodermic neoplasms bear a plasmacytoid dendritic cell phenotype. Hum Pathol. 2005;36(9):1020–4. doi: 10.1016/j.humpath.2005.07.002Google Scholar
Leroux, D, Mugneret, F, Callanan, M, et al. CD4(+), CD56(+) DC2 acute leukemia is characterized by recurrent clonal chromosomal changes affecting 6 major targets: a study of 21 cases by the Groupe Français de Cytogénétique Hématologique. Blood. 2002;99(11):4154–9. doi:10.1182/blood.v99.11.4154Google Scholar
Sakamoto, K, Katayama, R, Asaka, R, et al. Recurrent 8q24 rearrangement in blastic plasmacytoid dendritic cell neoplasm: association with immunoblastoid cytomorphology, MYC expression, and drug response. Leukemia. 2018;32(12):2590–603. doi:10.1038/s41375-018-0154-5Google Scholar
Tang, Z, Li, Y, Wang, W, et al. Genomic aberrations involving 12p/ETV6 are highly prevalent in blastic plasmacytoid dendritic cell neoplasms and might represent early clonal events. Leuk Res. 2018;73:8694. doi: 10.1038/s41375-018-0154-5Google Scholar
Dijkman, R, van Doorn, R, Szuhai, K, et al. Gene-expression profiling and array-based CGH classify CD4+CD56+ hematodermic neoplasm and cutaneous myelomonocytic leukemia as distinct disease entities. Blood. 2007;109(4):1720–7. doi:10.1182/blood-2006-04-018143Google Scholar
Sapienza, MR, Fuligni, F, Agostinelli, C, et al. Molecular profiling of blastic plasmacytoid dendritic cell neoplasm reveals a unique pattern and suggests selective sensitivity to NF-kB pathway inhibition. Leukemia. 2014;28(8):1606–16. doi: 10.1038/leu.2014.64Google Scholar
Alayed, K, Patel, KP, Konoplev, S, et al. TET2 mutations, myelodysplastic features, and a distinct immunoprofile characterize blastic plasmacytoid dendritic cell neoplasm in the bone marrow. Am J Hematol. 2013;88(12):1055–61. doi:10.1002/ajh.23567Google Scholar
Suzuki, K, Suzuki, Y, Hama, A, et al. Recurrent MYB rearrangement in blastic plasmacytoid dendritic cell neoplasm. Leukemia. 2017;31(7):1629–33. doi: 10.1038/leu.2017.101Google Scholar
Ceribelli, M, Hou, ZE, Kelly, PN, et al. A druggable TCF4- and BRD4-dependent transcriptional network sustains malignancy in blastic plasmacytoid dendritic cell neoplasm. Cancer Cell. 2016;30(5):764–78. doi:10.1016/j.ccell.2016.10.002Google Scholar
Jegalian, AG, Facchetti, F, Jaffe, ES. Plasmacytoid dendritic cells: physiologic roles and pathologic states. Adv Anat Pathol. 2009;16(6):392404. doi: 10.1097/PAP.0b013e3181bb6bc2Google Scholar
Roos-Weil, D, Dietrich, S, Boumendil, A, et al. Stem cell transplantation can provide durable disease control in blastic plasmacytoid dendritic cell neoplasm: a retrospective study from the European Group for Blood and Marrow Transplantation. Blood. 2013;121(3):440–6. doi: 10.1182/blood-2012-08-448613Google Scholar
Reimer, P, Rüdiger, T, Kraemer, D, et al. What is CD4+ CD56+ malignancy and how should it be treated? Bone Marrow Transplant. 2003;32(7):637–46. doi: 10.1038/sj.bmt.1704215Google Scholar

References

Borowitz, MJ, Bene, MC, Harris, NL, et al. Acute leukemias of ambiguous lineage. In: Swerdlow, SH, Campo, E, Harris, NL, et al., eds. WHO classification of tumours of haematopoietic and lymphoid tissues. Rev. 4th ed. Lyon, France:IARC Press; 2017:180–7.Google Scholar
Duffield, AS, Weir, EG, Borowitz, MJ. Acute leukemias of ambiguous lineage. In: Jaffe, ES, Arber, DA, Campo, E, et al., eds. Hematopathology. 2nd ed. Philadelphia, PA: Elsevier; 2017:775–82.Google Scholar
Aggarwal, N, Weinberg, OK. Update on acute leukemias of ambiguous lineage. Clin Lab Med. 2021;41:453–66.Google Scholar
Kurzer, JH, Weinberg, OK. Acute leukemias of ambiguous lineage: clarification on lineage specificity. Sur Pathol Clin. 2019;12:687–97.Google Scholar
Patel, SS, Weinberg, OK. Diagnostic workup of acute leukemias of ambiguous lineage. Am J Hematol. 2020;95:718–22.Google Scholar
Döhner, H, Estey, E, Grimwade, D, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129:424–47.Google Scholar
Weinberg, OK, Hasserjian, RP, Baraban, E, et al. Clinical, immunophenotypic, and genomic findings of acute undifferentiated leukemia and comparison to acute myeloid leukemia with minimal differentiation: a study from the bone marrow pathology group. Mod Pathol. 2019;32:1373–85.Google Scholar
Arber, DA, Brunning, RD, Orazi, A, et al. Acute myeloid leukemia, NOS. In: Swerdlow, SH, Campo, E, Harris, NL, et al., eds. WHO classification of tumours of haematopoietic and lymphoid tissues. Rev. 4th ed. Lyon, France: IARC Press; 2017:156–66.Google Scholar
Hanson, CA, Abaza, M, Sheldon, S, et al. Acute biphenotypic leukaemia: immunophenotypic and cytogenetic analysis.Br J Haematol. 1993;84:4960.Google Scholar
Matutes, E, Morilla, R, Farahat, N, et al. Definition of acute biphenotypic leukemia. Haematologica. 1997;82:64–6.Google Scholar
Matutes, E, Pickl, WF, Van’t Veer, M, et al. Mixed-phenotype acute leukemia: clinical and laboratory features and outcome in 100 patients defined according to the WHO 2008 classification. Blood. 2011;117:3163–71.Google Scholar
Lau, LG, Tan, LK, Koay, ES, et al. Acute lymphoblastic leukemia with the phenotype of a putative B‐cell/T‐cell bipotential precursor. Am J Hematol. 2004;77:156–60.Google Scholar
Hirabayashi, S, Butler, ER, Ohki, K, et al. Clinical characteristics and outcomes of B-ALL with ZNF384 rearrangements: A retrospective analysis by the Ponte di Legno Childhood ALL Working Group. Leukemia. 2021;10:16.Google Scholar

References

Onciu, M. Precursor lymphoid neoplasms. In: Proytcheva, MA, ed. Diagnostic pediatric hematopathology. Cambridge, UK: Cambridge University Press; 2011:323–44.Google Scholar
Borowitz, MJ, Chan, JKC, Downing, JR, et al. B-lymphoblastic leukaemia/lymphoma, not otherwise specified. In: Swerdlow, SH, Campo, E, Harris, NL, et al., eds. WHO classification of tumours of haematopoietic and lymphoid tissues, rev. 4th ed. Lyon, France: IARC Press; 2017:200–2.Google Scholar
Borowitz, MJ, Chan, JKC, Bene, MC, et al. T-lymphoblastic leukaemia/lymphoma. In: Swerdlow, SH, Campo, E, Harris, NL, et al., eds. WHO classification of tumours of haematopoietic and lymphoid tissues, rev. 4th ed. Lyon, France: IARC Press; 2017:209–13.Google Scholar
Duffield, AS, Racke, FK, Borowitz, MJ. Precursor B- and T-cell neoplasms. In: Jaffe, ES, Arber, DA, Campo, E, et al., eds. Hematopathology, 2nd ed. Philadelphia, PA: Elsevier;2017:761–73.Google Scholar
Borowitz, MJ, Chan, JKC, Downing, JR, et al. B-lymphoblastic leukaemia/lymphoma with recurrent genetic abnormalities. In: Swerdlow, SH, Campo, E, Harris, NL, et al., eds. WHO classification of tumours of haematopoietic and lymphoid tissues, rev. 4th ed.Lyon, France: IARC Press; 2017:203–9.Google Scholar
Bennett, JM, Catovaky, D, Daniel, MT et al. Proposals for the classification of the acute leukaemia. Br. J. Haematol. 1976; 33:451–8.Google Scholar
Malard, F, Mohty, M. Acute lymphoblastic leukaemia. Lancet. 2020. 395:1146–62.Google Scholar
Inaba, H, Mullighan, CG. Pediatric acute lymphoblastic leukemia. Haematologica. 2020;105:2524–39.Google Scholar
Holmfeldt, L, Wei, L, Diaz-Flores, E, et al. The genomic landscape of hypodiploid acute lymphoblastic leukemia. Nat Genet. 2013;45:242–52.Google Scholar
Moriyama, T, Metzger, ML, Wu, G, et al. Germline genetic variation in ETV6 and risk of childhood acute lymphoblastic leukaemia: a systematic genetic study. Lancet Oncol. 2015;16:1659–66.Google Scholar
Shah, S, Schrader, KA, Waanders, E, et al. A recurrent germline PAX5 mutation confers susceptibility to pre-B cell acute lymphoblastic leukemia. Nat Genet. 2013;45:1226–31.Google Scholar
Noetzli, L, Lo, RW, Lee-Sherick, AB, et al. Germline mutations in ETV6 are associated with thrombocytopenia, red cell macrocytosis and predisposition to lymphoblastic leukemia. Nat Genet. 2015;47:535–8.Google Scholar
Knez, V, Liu, X, Schowinsky, J, et al. Clinicopathologic and genetic spectrum of infantile B-lymphoblastic leukemia: A multi-institutional study. Leuk Lymphoma. 2019;60:1006–13.Google Scholar
Valbuena, JR, Medeiros, LJ, Rassidakis, GZ, et al. Expression of B cell-specific activator protein/PAX5 in acute myeloid leukemia with t(8;21)(q22;q22). Am J Clin Pathol. 2006;126:235–40.Google Scholar
Hashimoto, M, Yamashita, Y, Mori, N. Immunohistochemical detection of CD79a expression in precursor T cell lymphoblastic lymphoma/leukaemias. J Pathol. 2002;197:341–7.Google Scholar
Gohring, G, Michalva, K, Beverloo, B, et al. Complex karyotype newly defined: the strongest prognostic factor in advanced childhood myelodysplastic syndrome. Blood. 2010;116:3766–9.Google Scholar
Knez, V, Bao, L, Carstens, B, et al. Analysis of clinicopathological and cytogenetic differences between B-lymphoblastic lymphoma and B-lymphoblastic leukemia in childhood. Leuk Lymphoma. 2020;61:2129–35.Google Scholar
Ramakers-van Woerden, NL, Pieters, R, Loonen, AH, et al. TEL/AML1 gene fusion is related to in vitro drug sensitivity for L-asparaginase in childhood acute lymphoblastic leukemia. Blood. 2000;96:1094–9.Google Scholar
Nachman, JB, Heerema, NA, Sather, H, et al. Outcome of treatment in children with hypodiploid acute lymphoblastic leukemia. Blood. 2007;110:1112–5.Google Scholar
Den Boer, ML, van Slegtenhorst, M, De Menezes, RX, et al. A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study. Lancet Oncol. 2009;10:125–34.Google Scholar
Yadav, V, Ganesan, P, Veeramani, R, et al. Philadelphia-like acute lymphoblastic leukemia: a systematic review. Clin Lymphoma Myeloma Leuk. 2021;21:e57e65.Google Scholar
Wenzinger, C, Williams, E, Gru, AA. Updates in the pathology of precursor lymphoid neoplasms in the revised fourth edition of the WHO Classification of Tumors of Hematopoietic and Lymphoid Tissues. Curr Hematol Malig Rep. 2018;13:275–88.Google Scholar
Khan, M, Siddiqi, R, Tran, TH. Philadelphia chromosome-like acute lymphoblastic leukemia: a review of the genetic basis, clinical features, and therapeutic options. Semi Hematol. 2018;55:235–41.Google Scholar
Loh, ML, Zhang, J, Harvey, RC, et al. Tyrosine kinome sequencing of pediatric acute lymphoblastic leukemia: a report from the Children’s Oncology Group TARGET Project. Blood. 2013;121:485–8.Google Scholar
Lyapichev, KA, Sukswai, N, Angelova, E, et al. CD123 expression in Philadelphia chromosome-like B acute lymphoblastic leukemia/lymphoma. Clin Lymphoma Myeloma Leuk. 2021;21:e317–e20.Google Scholar
Sadras, T, Heatley, SL, Kok, CH, et al. Differential expression of MUC4, GPR110 and IL2RA defines two groups of CRLF2-rearranged acute lymphoblastic leukemia patients with distinct secondary lesions. Cancer Lett. 2017;408:92101.Google Scholar
Yap, KL, Furtado, LV, Kiyotani, K, et al. Diagnostic evaluation of RNA sequencing for the detection of genetic abnormalities associated with Ph-like acute lymphoblastic leukemia (ALL). Leuk Lymphoma. 2017;58:950–8.Google Scholar
Harrison, CJ. Blood spotlight on iAMP21 acute lymphoblastic leukemia (ALL), a high-risk pediatric disease. Blood. 2015;125:1383–6.Google Scholar
Lilljebjorn, H, Henningsson, R, Hyrenius-Wittsten, A, et al. Identification of ETV6-RUNX1-like and DUX4-rearranged subtypes in paediatric B-cell precursor acute lymphoblastic leukaemia. Nat Commun. 2016;7:11790.Google Scholar
Zhang, J, McCastlain, K, Yoshihara, H, et al. Deregulation of DUX4 and ERG in acute lymphoblastic leukemia. Nat Genet. 2016;48:1481–9.Google Scholar
Dib, C, Zakharova, V, Popova, E, et al. DUX4 pathological expression: causes and consequences in cancer. Trends Cancer. 2019;5:268–71.Google Scholar
Tian, L, Shao, Y, Nance, S, et al. Long-read sequencing unveils IGH-DUX4 translocation into the silenced IGH allele in B-cell acute lymphoblastic leukemia. Nat Commun. 2019;10:2789.Google Scholar
Tanaka, Y, Kawazu, M, Yasuda, T, et al. Transcriptional activities of DUX4 fusions in B-cell acute lymphoblastic leukemia. Haematologica. 2018;103:e522–e6.Google Scholar
Rehn, JA, O’Connor, MJ, White, DL, et al. DUX hunting – clinical features and diagnostic challenges associated with DUX4-Rearranged leukaemia. Cancers (Basel). 2020;12.Google Scholar
Schinnerl, D, Mejstrikova, E, Schumich, A, et al. CD371 cell surface expression: a unique feature of DUX4-rearranged acute lymphoblastic leukemia. Haematologica. 2019;104:e352–e5.Google Scholar
Novakova, M, Zaliova, M, Fiser, K, et al. DUX4 r, ZNF384 r and PAX5-P80 R mutated B-cell precursor acute lymphoblastic leukemia frequently undergo monocytic switch. Haematologica. 2021;106:2066–75.Google Scholar
Ueno, H, Yoshida, K, Shiozawa, Y, et al. The prognostic value of TP53 mutations depends on clinical backgrounds in pediatric patients with acute lymphoblastic leukemia. Blood. 2018;132 (Suppl 1):4077.Google Scholar
Borowitz, MJ, Chan, JKC, Bene, MC, et al. T-lymphoblastic leukaemia/lymphoma. In: Swerdlow, SH, Campo, E, Harris, NL, et al., eds. WHO classification of tumours of haematopoietic and lymphoid tissues, rev. 4th ed. Lyon, France: IARC Press; 2017:209–13.Google Scholar
Kurtin, P. Thymus gland. In: Collins, RD, Swerdlow, SH, eds. Pediatric hematopathology. Philadelphia, PA: Churchill Livingstone; 2001:323–41.Google Scholar
Borowitz, MJ, Bene, MC, Harris, NL, et al. NK-lymphoblastic leukaemia/lymphoma. In: Swerdlow, SH, Campo, E, Harris, NL, et al., eds. WHO classification of tumours of haematopoietic and lymphoid tissues, rev. 4th ed. Lyon, France: IARC Press; 2017:213.Google Scholar

References

Proytcheva, MA. Pediatric small blue cell tumors metastatic to the bone marrow. In: Proytcheva, MA, eds. Diagnostic pediatric hematopathology. Cambridge: UK: Cambridge University Press; 2011:379–94.Google Scholar
Kopp, LM, Hu, C, Rozo, B, et al. Utility of bone marrow aspiration and biopsy in initial staging of Ewing sarcoma. Pediatr Blood Cancer. 2015;62:12–5.Google Scholar
Parsons, LN, Gheorghe, G, Yan, K, et al. An evidence-based recommendation for a standardized approach to detecting metastatic neuroblastoma in staging bone marrow biopsies. Pediatr Dev Pathol. 2017;20:3843.Google Scholar
Bailey, KA, Wexier, LH. Pediatric rhabdomyosarcoma with bone marrow metastasis. Pediatr Blood Cancer. 2020;67(5):e28219.Google Scholar
Cesari, M, Righi, A, Colangeli, M, et al. Bone marrow biopsy in the initial staging of Ewing sarcoma: Experience from a single institution. Pediatr Blood Cancer. 2019;66(6):e27653.Google Scholar
Kontny, U, Franzen, S, Behrends, U, et al. Diagnosis and treatment of nasopharyngeal carcinoma in children and adolescents – recommendations of the GPOH-NPC Study Group. Klin Padiatr. 2016;228:105–12.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×