Published online by Cambridge University Press: 05 October 2010
Abstract
This survey article is devoted to general results in combinatorial enumeration. The first part surveys results on growth of hereditary properties of combinatorial structures. These include permutations, ordered and unordered graphs and hypergraphs, relational structures, and others. The second part advertises four topics in general enumeration: 1. counting lattice points in lattice polytopes, 2. growth of context-free languages, 3. holonomicity (i.e., P-recursiveness) of numbers of labeled regular graphs and 4. ultimate modular periodicity of numbers of MSOL-definable structures.
Introduction
We survey some general results in combinatorial enumeration. A problem in enumeration is (associated with) an infinite sequence P = (S1, S2, …) of finite sets Si. Its counting function fP is given by fP (n) = |Sn|, the cardinality of the set Sn. We are interested in results of the following kind on general classes of problems and their counting functions.
Scheme of general results in combinatorial enumeration. The counting function fP of every problem P in the class C belongs to the class of functions F. Formally, {fP | P ∈ C} ⊂ F.
The larger C is, and the more specific the functions in F are, the stronger the result. The present overview is a collection of many examples of this scheme.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.