Book contents
- Frontmatter
- Dedication
- Contents
- Preface
- List of Acronyms
- 1 Introduction
- 2 Wave Propagation
- 3 Focusing and Self-Imaging
- 4 Dispersive Effects
- 5 Nonlinear Optical Phenomena
- 6 Effects of Loss or Gain
- 7 Nonuniform GRIN Media
- 8 Vortex Beams
- 9 Photonic Spin-Orbit Coupling
- 10 Photonic Crystals and Metamaterials
- 11 Impact of Partial Coherence
- Appendix A Quantum Harmonic Oscillator
- Appendix B Fractional Fourier Transform
- Index
3 - Focusing and Self-Imaging
Published online by Cambridge University Press: 27 July 2023
- Frontmatter
- Dedication
- Contents
- Preface
- List of Acronyms
- 1 Introduction
- 2 Wave Propagation
- 3 Focusing and Self-Imaging
- 4 Dispersive Effects
- 5 Nonlinear Optical Phenomena
- 6 Effects of Loss or Gain
- 7 Nonuniform GRIN Media
- 8 Vortex Beams
- 9 Photonic Spin-Orbit Coupling
- 10 Photonic Crystals and Metamaterials
- 11 Impact of Partial Coherence
- Appendix A Quantum Harmonic Oscillator
- Appendix B Fractional Fourier Transform
- Index
Summary
The focus of this chapter is on focusing and self-imaging of optical beams occurring in a graded-index rod. Section 3.1 provides a geometrical-optics perspective and shows why optical rays follow a curved path inside a GRIN medium. The modes of such a medium are used in Section 3.2 to find a propagation kernel and use it discuss the phenomenon of self-imaging. Section 3.3 is devoted to studying how a GRIN rod can be used as a flat lens to focus an incoming optical beam. Imaging characteristics of such a lens are also considered in this section. Several important applications of GRIN devices are discussed in Section 3.4.
Keywords
- Type
- Chapter
- Information
- Physics and Engineering of Graded-Index Media , pp. 55 - 83Publisher: Cambridge University PressPrint publication year: 2023