Book contents
- Frontmatter
- Dedication
- Contents
- Preface
- List of Acronyms
- 1 Introduction
- 2 Wave Propagation
- 3 Focusing and Self-Imaging
- 4 Dispersive Effects
- 5 Nonlinear Optical Phenomena
- 6 Effects of Loss or Gain
- 7 Nonuniform GRIN Media
- 8 Vortex Beams
- 9 Photonic Spin-Orbit Coupling
- 10 Photonic Crystals and Metamaterials
- 11 Impact of Partial Coherence
- Appendix A Quantum Harmonic Oscillator
- Appendix B Fractional Fourier Transform
- Index
5 - Nonlinear Optical Phenomena
Published online by Cambridge University Press: 27 July 2023
- Frontmatter
- Dedication
- Contents
- Preface
- List of Acronyms
- 1 Introduction
- 2 Wave Propagation
- 3 Focusing and Self-Imaging
- 4 Dispersive Effects
- 5 Nonlinear Optical Phenomena
- 6 Effects of Loss or Gain
- 7 Nonuniform GRIN Media
- 8 Vortex Beams
- 9 Photonic Spin-Orbit Coupling
- 10 Photonic Crystals and Metamaterials
- 11 Impact of Partial Coherence
- Appendix A Quantum Harmonic Oscillator
- Appendix B Fractional Fourier Transform
- Index
Summary
The focus in this chapter is on intensity-dependent changes in the refractive index of a GRIN medium, responsible for the Kerr effect. In Section 5.1, we consider self-focusing of an optical beam inside a GRIN medium. Pulsed beams are considered in Section 5.2, where we derive a nonlinear propagation equation and discuss the phenomena of self- and cross-phase modulations. Section 5.3 is devoted to modulation instability and the formation of multimode solitons. Intermodal nonlinear effects are considered in Section 5.4 with emphasis on four-wave mixing and stimulated Raman scattering. Nonlinear applications discussed in Section 5.5 include supercontinuuum generation, spatial beam cleanup, and second harmonic generation.
Keywords
- Type
- Chapter
- Information
- Physics and Engineering of Graded-Index Media , pp. 111 - 162Publisher: Cambridge University PressPrint publication year: 2023