Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-13T21:33:10.015Z Has data issue: false hasContentIssue false

21 - Dynamics and Viscoelasticity of Suspensions and Biofilms

from Part III - Interacting Bacteria and Biofilms

Published online by Cambridge University Press:  12 December 2024

Thomas Andrew Waigh
Affiliation:
University of Manchester
Get access

Summary

Introduces swarming, superfluids, non-linear rheology, bacterial turbulence and biofilm viscoelasticity.

Type
Chapter
Information
The Physics of Bacteria
From Cells to Biofilms
, pp. 229 - 246
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Suggested Reading

Lauga, E., Bacterial hydrodynamics. Annual Review of Fluid Mechanics 2016, 48, 105130. Excellent theoretical overview of bacterial motility.CrossRefGoogle Scholar
Lauga, E. The Fluid Mechanics of Cellular Motility. Cambridge University Press: 2020. Some interesting calculations on bacteria in viscoelastic fluids are considered.Google Scholar
Pismen, L. Active Matter Within and Around Us. Springer: 2021. Excellent introduction to the active motility of cells.CrossRefGoogle Scholar

References

Lopez, H. M.; Gachelin, J.; Douarche, C.; Auradou, H.; Clement, E., Turning bacteria suspensions into superfluids. Physical Review Letters 2015, 115 (2), 28301.CrossRefGoogle ScholarPubMed
Sokolov, A.; Aranson, I. S.; Kessler, J. O.; Goldstein, R. E., Concentration dependence of the collective dynamics of swimming bacteria. Physical Review Letters 2007, 98 (15), 158102.CrossRefGoogle ScholarPubMed
Sokolov, A.; Aranson, I. S., Reduction of viscosity in suspension of swimming bacteria. Physical Review Letters 2009, 103 (14), 148101.CrossRefGoogle ScholarPubMed
Gachelin, J.; Mino, G.; Berthet, H.; Lindner, A.; Rousselet, A.; Clement, E., Non-Newtonian viscosity of Escherichia coli suspensions. Physical Review Letters 2013, 110 (26), 268103.CrossRefGoogle ScholarPubMed
Rhodeland, B.; Hoeger, K.; Ursell, T., Bacterial surface motility is modulated by colony-scale flow and granular jamming. Journal of Royal Society Interface 2020, 17 (167), 20200147.CrossRefGoogle ScholarPubMed
Waitukaitis, S. R.; Jaeger, H. M., Impact-activated solidification of dense suspensions via dynamic jamming fronts. Nature 2012, 487 (7406), 205209.CrossRefGoogle ScholarPubMed
Cates, M. E.; Tailleur, J., Motility-induced phase separation. Annual Review of Condensed Matter Physics 2015, 6, 219244.CrossRefGoogle Scholar
Stenhammer, J.; Tiribocchi, A.; Allen, R. J.; Marenduzzo, D.; Cates, M. E., Continuum theory of phase separation kinetics for active Brownian particles. Physical Review Letters 2013, 111 (14), 145702.CrossRefGoogle Scholar
Pismen, L., Active Matter Within and Around Us: From Self-propelled Particles to Flocks and Living Forms. Springer: 2021.CrossRefGoogle Scholar
Fu, X.; Tang, L. H.; Liu, C.; Huang, J. D.; Hwa, T.; Lenz, P., Stripe formation in bacterial systems with density-suppressed motility. Physical Review Letters 2012, 108 (19), 198102.CrossRefGoogle ScholarPubMed
Bechinger, C.; Di Leonardo, R.; Lowen, H.; Reichardt, C.; Volpe, G.; Volpe, G., Active particles in complex and crowded environments. Reviews of Modern Physics 2016, 88 (4), 045006.CrossRefGoogle Scholar
Kearns, D. B., A field guide to bacterial swarming motility. Nature Reviews Microbiology 2010, 8 (9), 634644.CrossRefGoogle ScholarPubMed
Darnton, N. C.; Turner, L.; Rojevsky, S.; Berg, H. C., Dynamics of bacterial swarming. Biophysical Journal 2010, 98 (10), 20822090.CrossRefGoogle ScholarPubMed
Vicsek, T.; Czirok, A.; Ben-Jacob, E.; Cohen, I.; Shochet, O., Novel type of phase transition in a system of self-driven particles. Physical Review Letters 1995, 75 (6), 12261229.CrossRefGoogle Scholar
Mounfield, C. C., The Handbook of Agent Based Modelling. Independent Publishing: 2020.Google Scholar
Czirok, A.; Ben-Jacob, E.; Cohen, I.; Vicsek, T., Formation of complex bacterial colonies via self-generated vortices. Physical Review E 1996, 54 (2), 1791.CrossRefGoogle ScholarPubMed
Cisneros, L. H.; Kessler, J. O.; Ganguly, S.; Goldstein, R. E., Dynamics of swimming bacteria: Transition to directional order at high concentration. Physical Review E 2011, 83 (6 Pt 1), 061907.CrossRefGoogle ScholarPubMed
Dogic, Z.; Fraden, S., Development of model colloidal liquid crystals and the kinetics of the isotropic-smectic transition. Philosophical Transactions of the Royal Society A 2001, 359 (1782), 9971015.CrossRefGoogle Scholar
Vroege, G. J.; Lekkerkerker, H. N. W., Phase transitions in lyotropic colloidal and polymeric liquid crystals. Reports on Progress in Physics 1992, 55 (8), 12411309.CrossRefGoogle Scholar
Ilkanaiv, B.; Kearns, D. B.; Ariel, G.; Be’er, A., Effect of cell aspect ratio on swarming bacteria. Physical Review Letters 2017, 118 (15), 158002.CrossRefGoogle ScholarPubMed
Chen, X.; Dong, X.; Be’er, A.; Swinney, H. L.; Zhang, H. P., Scale-invariant correlation in dynamic bacterial clusters. Physical Review Letters 2012, 108, 148101.CrossRefGoogle ScholarPubMed
Dombrowski, C.; Cisneros, L.; Chatkaew, S.; Goldstein, R. E.; Kessler, J. O., Self-concentration and large-scale coherence in bacterial dynamics. Physical Review Letters 2004, 93 (9), 098103.CrossRefGoogle ScholarPubMed
Shklarsh, A.; Finkelshtein, A.; Ariel, G.; Kalisman, O.; Ingham, C.; Ben-Jacob, E., Collective navigation of cargo-carrying swarms. Interface Focus 2012, 2 (6), 786798.CrossRefGoogle ScholarPubMed
Lu, S.; Bi, W.; Liu, F.; Wu, X., Loss of collective motion of bacteria undergoing stress. Physical Review Letters 2013, 111 (20), 208101.CrossRefGoogle ScholarPubMed
Yang, J.; Arratia, P. E.; Patterson, A. E.; Gopinath, A., Quenching active swarms: Effects of light exposure on collective motility in swarming Serratia marcescens. Journal of Royal Society Interface 2019, 16 (156), 20180960.CrossRefGoogle ScholarPubMed
Wu, X. L.; Libchaber, A., Particle diffusion in a quasi-two-dimensional bacterial bath. Physical Review Letters 2000, 84 (13), 30173020.CrossRefGoogle Scholar
Waigh, T. A., Advances in the microrheology of complex fluids. Reports on Progress in Physics 2016, 79 (7), 074601.CrossRefGoogle ScholarPubMed
Waigh, T. A., Microrheology of complex fluids. Reports on Progress in Physics 2005, 68 (3), 685.CrossRefGoogle Scholar
Chen, D. T. N.; Lau, A. W. C.; Hough, L. A.; Islam, M. F.; Goulian, M.; Lubensky, T. C.; Yodh, A. G., Fluctuations and rheology in active bacterial suspensions. Physical Review Letters 2007, 99 (14), 148302.CrossRefGoogle ScholarPubMed
Lagarde, A.; Dages, N.; Nemoto, T.; Demery, V.; Bartolo, D.; Gibaud, T., Colloidal transport in bacteria suspensions: From bacteria collision to anomalous and enhanced diffusion. Soft Matter 2020, 16 (32), 7503.CrossRefGoogle ScholarPubMed
Mason, T. G.; Weitz, D. A., Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids. Physical Review Letters 1995, 74 (7), 1250.CrossRefGoogle ScholarPubMed
Du, H.; Xu, Z.; Anyan, M.; Kim, O.; Leevy, W. M.; Shrout, J. D.; Alber, M., High density waves of the bacterium Pseudomonas aeruginosa in propagating swarms result in efficient colonization of surfaces. Biophysical Journal 2012, 103 (3), 601609.CrossRefGoogle ScholarPubMed
Dunkel, J.; Heidenreich, S.; Drescher, K.; Wensick, H. H.; Bar, M.; Goldstein, R. E., Fluid mechanics of bacterial turbulence. Physical Review Letters 2013, 110, 228102.CrossRefGoogle Scholar
Wolgemuth, C. W., Collective swimming and the dynamics of bacterial turbulence. Biophysical Journal 2008, 95 (4), 15641574.CrossRefGoogle ScholarPubMed
Peruani, F.; Starrus, J.; Jakovljevic, V.; Sogaard-Andersen, L.; Deutsch, A.; Baer, M., Collective motion and nonequilibrium cluster formation in colonies of gliding bacteria. Physical Review Letters 2012, 108 (9), 098102.CrossRefGoogle ScholarPubMed
Wensink, H. H.; Dunkel, J.; Heidenreich, S.; Drescher, K.; Goldstein, R. E.; Lowen, H.; Yeomans, J. M., Meso-scale turbulence in living fluids. PNAS 2012, 109 (36), 1430814313.CrossRefGoogle ScholarPubMed
Dunkel, J.; Heidenreich, S.; Bar, M.; Goldstein, R. E., Minimal continuum theories of structure formation in dense active fluids. New Journal of Physics 2013, 15 (4), 045016.CrossRefGoogle Scholar
Davidson, P., Turbulence: An Introduction for Scientists and Engineers. Oxford University Press: 2015.CrossRefGoogle Scholar
Secchi, E.; Rusconi, R.; Buzzaccaro, S.; Salek, M. M.; Smriga, S.; Piazza, R.; Stocker, R., Intermittent turbulence in flowing bacterial suspensions. Journal of Royal Society Interface 2016, 13 (119), 20160175.CrossRefGoogle ScholarPubMed
Simha, R. A.; Ramaswarmy, S., Hydrodynamic fluctuations and instabilities in ordered suspensions of self-propelled particles. Physical Review Letters 2002, 89 (5), 058101.CrossRefGoogle Scholar
Goodwin, J. W.; Hughes, R. W., Rheology for Chemists: An Introduction. Royal Society of Chemistry: 2008.Google Scholar
Lauga, E., The Fluid Dynamics of Cell Moility. Cambridge University Press: 2020.CrossRefGoogle Scholar
Martinez, V. A.; Schwarz-Linek, J.; Reufer, M.; Wilson, L. G.; Morozov, A. N.; Poon, W. C. K., Flagellated bacterial motility in polymer solutions. PNAS 2014, 111 (50), 1777117776.CrossRefGoogle ScholarPubMed
Zottl, A.; Yeomans, J. M., Enhanced bacterial swimming speeds in macromolecular polymer solutions. Nature Physics 2019, 15 (6), 554558.CrossRefGoogle Scholar
Kamdar, S.; Shin, S.; Leishangthem, P.; Francis, L. F.; Xu, X.; Cheng, X., The colloidal nature of complex fluids enhances bacterial motility. Nature 2022, 603 (7903), 819823.CrossRefGoogle ScholarPubMed
Constantino, M. A.; Jabbarzadeh, M.; Fo, H. C.; Bansil, R., Helical and rod-shaped bacteria swim in helical trajectories with little additional population from helical shape. Science Advances 2016, 2 (11), e1601661.CrossRefGoogle Scholar
Linz, B.; et al., An African origin for the intimate association between humans and Helicobacter pylori. Nature 2007, 445 (7130), 915918.CrossRefGoogle ScholarPubMed
Georgiades, P.; Pudney, P. D. A.; Thornton, D. J.; Waigh, T. A., Particle tracking microrheology of purified gastrointestinal mucins. Biopolymers 2014, 101 (4), 366377.CrossRefGoogle ScholarPubMed
Hart, J. W.; Waigh, T. A.; Lu, J. R.; Roberts, I. S., Microrheology and spatial heterogeneity of Staphylococcus aureus biofilms modulated by hydrodynamic shear and biofilm-degrading enzymes. Langmuir 2019, 35 (9), 35533561.CrossRefGoogle ScholarPubMed
Rogers, S. S.; van der Walle, C.; Waigh, T. A., Microrheology of bacterial biofilms in vitro: Staphylococcus aureus and Pseudomonas aeruginosa. Langmuir 2008, 24 (23), 1354913555.CrossRefGoogle ScholarPubMed
Wucher, B. R.; Elsayed, M.; Adelman, J. S.; Kadouri, D. E.; Nadell, C. D., Bacterial predation transforms the landscape and community assembly of biofilms. Current Biology 2021, 31 (12), 26432651.CrossRefGoogle ScholarPubMed
Duffy, K. J.; Cummings, P. T.; Ford, R. M., Random walk calculations for bacterial migration in porous media. Biophysical Journal 1995, 68 (3), 800806.CrossRefGoogle ScholarPubMed
de Anna, P.; Pahlavau, A. A.; Yawata, Y.; Stocker, R.; Juones, R., Chemotaxis under flow disorder shapes microbial dispersion in porous media. Nature Physics 2021, 17, 6873CrossRefGoogle Scholar
Gomand, F.; Mitchell, W. H.; Burgain, J.; Petit, J.; Borges, F.; Spagnolie, S. E.; Gaiani, C., Shaving and breaking bacterial chains with a viscous flow. Soft Matter 2020, 16 (40), 9273.CrossRefGoogle ScholarPubMed
Mushenheim, P. C.; Trivedi, R. R.; Tuson, H. H.; Weibel, D. B.; Abbott, N. L., Dynamic self-assembly of motile bacteria in liquid crystals. Soft Matter 2014, 10 (1), 8895.CrossRefGoogle ScholarPubMed
Albersdorfer, A.; Sackmann, E., Swelling behaviour and viscoelasticity of ultrathin grafted hyaluronic acid films. European Physical Journal B 1999, 10 (4), 663672.CrossRefGoogle Scholar
Morris, E. R.; Nishinari, K.; Rinaudo, M., Gelation of gellan – a review. Food Hydrocolloids 2012, 28 (2), 373411.CrossRefGoogle Scholar
Ross Murphy, S. B., Structure-property relationships in food biopolymer gels and solutions. Journal of Rheology 1995, 39 (6), 14511463.CrossRefGoogle Scholar
Geisel, S.; Secchi, E.; Vermant, J., Experimental challenges in determining the rheological properties of bacterial biofilms. Interface Focus 2022, 12 (6), 20220032.CrossRefGoogle ScholarPubMed
Galy, O.; Latour-Lambert, P.; Zrelli, K.; Ghigo, J. M.; Beloin, C.; Henry, N., Mapping of bacterial biofilm local mechanics by magnetic microparticle actuation. Biophysical Journal 2012, 103 (6), 14001408.CrossRefGoogle ScholarPubMed
Picioreanu, C.; Blauert, F.; Horn, H.; Wagner, M., Determination of mechanical properties of biofilms by modelling the deformation measured using optical coherence tomography. Water Research 2018, 145, 588598.CrossRefGoogle ScholarPubMed
Hohne, D. N.; Younger, J. G.; Solomon, M. J., Flexible microfluidic device for mechanical property characterization of soft viscoelastic solids such as bacterial biofilms. Langmuir 2009, 25 (13), 77437751.CrossRefGoogle ScholarPubMed
Powell, L. C.; Abdulkarim, M.; Stokniene, J.; Yang, Q. E.; Walsh, T. R.; Hill, K. E.; Gumbleton, M.; Thomas, D. W., Quantifying the effects of antibiotic treatment on the extracellular polymer network of antimicrobial resistant and sensitive biofilms using multiple particle tracking. npj Biofilms and Microbiomes 2021, 7 (1), 13.CrossRefGoogle ScholarPubMed
Lieleg, O.; Caldara, M.; Baumgartel, R.; Ribbeck, K., Mechanical robustness of Pseudomonas aeruginosa biofilms. Soft Matter 2011, 7 (7), 33073314.CrossRefGoogle ScholarPubMed
Rusconi, R.; Lecuyer, S.; Autrusson, N.; Guglielmini, L.; Stone, H. A., Secondary flow as a mechanism for the formation of biofilm streamers. Biophysical Journal 2011, 100 (6), P1392–1399.CrossRefGoogle ScholarPubMed
Stoodley, P.; Cargo, R.; Rupp, C. J.; Wilson, S.; Klapper, I., Biofilm material properties as related to shear-induced deformation and detachment phenomena. Journal of Industrial Microbiology and Biotechnology 2002, 29 (6), 361367.CrossRefGoogle ScholarPubMed
Aravas, N.; Laspidou, C. S., On the calculation of the elastic modulus of a biofilm streamer. Biotechnology and Bioengineering 2008, 101 (1), 196.CrossRefGoogle ScholarPubMed
Jana, S.; Charlton, S. G. V.; Eland, L. E.; Burgess, J. G.; Wipat, A.; Curtis, T. P.; Chen, J., Nonlinear rheological characteristics of single species bacterial biofilms. npj Biofilms and Microbiomes 2020, 6 (10), 19.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×