Published online by Cambridge University Press: 24 May 2020
Exact solution of two-dimensional Dirac equation for Coulomb potential (Dirac–Kepler problem) is presented. Linear and nonlinear screening of the Coulomb potential is discused. The main focus is on the phenomenon of relativistic collapse of supercritical charges, which was discussed for many years in high-energy physics (this is the process that determines the end of the periodic table) and was at last discovered in graphene. We introduce Hartree–Fock theory for massless Dirac electrons and show that their Coulomb interaction essentially renormalizes Fermi velocity in such a way that Dirac cone is, strictly speaking, no more cone.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.