Book contents
- The Physics of Graphene
- The Physics of Graphene
- Copyright page
- Dedication
- Contents
- Preface to the second edition
- Preface to the first edition
- 1 The electronic structure of ideal graphene
- 2 Electron states in a magnetic field
- 3 Quantum transport via evanescent waves
- 4 The Klein paradox and chiral tunneling
- 5 Edges, nanoribbons, and quantum dots
- 6 Point defects
- 7 Optics and response functions
- 8 The Coulomb problem
- 9 Crystal lattice dynamics, structure, and thermodynamics
- 10 Gauge fields and strain engineering
- 11 Scattering mechanisms and transport properties
- 12 Spin effects and magnetism
- 13 Graphene on hexagonal boron nitride
- 14 Twisted bilayer graphene
- 15 Many-body effects in graphene
- References
- Index
9 - Crystal lattice dynamics, structure, and thermodynamics
Published online by Cambridge University Press: 24 May 2020
- The Physics of Graphene
- The Physics of Graphene
- Copyright page
- Dedication
- Contents
- Preface to the second edition
- Preface to the first edition
- 1 The electronic structure of ideal graphene
- 2 Electron states in a magnetic field
- 3 Quantum transport via evanescent waves
- 4 The Klein paradox and chiral tunneling
- 5 Edges, nanoribbons, and quantum dots
- 6 Point defects
- 7 Optics and response functions
- 8 The Coulomb problem
- 9 Crystal lattice dynamics, structure, and thermodynamics
- 10 Gauge fields and strain engineering
- 11 Scattering mechanisms and transport properties
- 12 Spin effects and magnetism
- 13 Graphene on hexagonal boron nitride
- 14 Twisted bilayer graphene
- 15 Many-body effects in graphene
- References
- Index
Summary
This chapter mostly explains the role of graphene as a prototype crystalline membrane. We discuss peculiarities of phonon spectra of two-dimensional crystals, such as existence of soft flexural modes and unavoidably decisive role of anharmonic effects, the physical origin of negative thermal expansion of graphene and Mermin–Wagner theorem forbidding long-range crystalline order for two-dimensional materials. We consider mechanics and statistical mechanics of crystalline membranes and especially the role of thermal fluctuations resulting in intrinsic ripples. At the end of this chapter, we give a basic introduction to Raman spectroscopy which is one of the most important experimental tools to probe the properties of graphene.
Keywords
- Type
- Chapter
- Information
- The Physics of Graphene , pp. 213 - 256Publisher: Cambridge University PressPrint publication year: 2020