Book contents
- The Physics of Graphene
- The Physics of Graphene
- Copyright page
- Dedication
- Contents
- Preface to the second edition
- Preface to the first edition
- 1 The electronic structure of ideal graphene
- 2 Electron states in a magnetic field
- 3 Quantum transport via evanescent waves
- 4 The Klein paradox and chiral tunneling
- 5 Edges, nanoribbons, and quantum dots
- 6 Point defects
- 7 Optics and response functions
- 8 The Coulomb problem
- 9 Crystal lattice dynamics, structure, and thermodynamics
- 10 Gauge fields and strain engineering
- 11 Scattering mechanisms and transport properties
- 12 Spin effects and magnetism
- 13 Graphene on hexagonal boron nitride
- 14 Twisted bilayer graphene
- 15 Many-body effects in graphene
- References
- Index
4 - The Klein paradox and chiral tunneling
Published online by Cambridge University Press: 24 May 2020
- The Physics of Graphene
- The Physics of Graphene
- Copyright page
- Dedication
- Contents
- Preface to the second edition
- Preface to the first edition
- 1 The electronic structure of ideal graphene
- 2 Electron states in a magnetic field
- 3 Quantum transport via evanescent waves
- 4 The Klein paradox and chiral tunneling
- 5 Edges, nanoribbons, and quantum dots
- 6 Point defects
- 7 Optics and response functions
- 8 The Coulomb problem
- 9 Crystal lattice dynamics, structure, and thermodynamics
- 10 Gauge fields and strain engineering
- 11 Scattering mechanisms and transport properties
- 12 Spin effects and magnetism
- 13 Graphene on hexagonal boron nitride
- 14 Twisted bilayer graphene
- 15 Many-body effects in graphene
- References
- Index
Summary
Starting from a detailed explanation of Klein paradox of relativistic quantum mechanics, we consider a motion of massless Dirac fermions through potential barriers. It is shown that chiral properties of these particles guarantee a penetration through arbitrarily high and broad potential barriers. The role of this phenomenon (chiral tunneling) for graphene physics and technology is explained. We discuss analogy between electronic optics of graphene and optical properties of metamaterials, especially, Veselago lensing effect for massless Dirac fermions. Chiral tunneling in bilayer graphene is discussed.
Keywords
- Type
- Chapter
- Information
- The Physics of Graphene , pp. 77 - 107Publisher: Cambridge University PressPrint publication year: 2020