Published online by Cambridge University Press: 05 March 2014
Introduction
The rapid development of research on plasmonics in recent years has led to numerous interesting applications, and many plasmonic nanostructures have been designed and fabricated to achieve novel functionalities and/or better performance. For example, optical antennas are used for biochemical sensing [1–4], plasmonic waveguides have been proposed for on-chip optical communications [5], and metamaterials are under consideration for subwavelength imaging [6]. Most of those plasmonic nanostructures are complicated, so we cannot find analytical solutions for them. Therefore numerical modeling methods are the only choice when it comes to device modeling and structural design. Many numerical methods for solving Maxwell's equations have been established. They can be generally categorized into two classes: frequency-domain methods and time-domain methods.
In frequency-domain methods we assume that the electromagnetic wave is a single-frequency harmonic wave with a time dependence term eiωt or e−iωt (most electrical engineers use eiωt, while e−iωtis more popular among physicists. They are essentially the same, except that, when a medium is lossy, the imaginary parts of its refractive index and permittivity take positive values for e−iωt and negative values for eiωt). Then the time dependence in Maxwell's equations can easily be eliminated and the fields are functions solely of space coordinates. The solutions obtained from frequency-domain methods are generally steady-state solutions. There are many frequency-domain methods available for plasmonic device modeling, among which the finite-element method (FEM) and the method of moments (MoM) are very popular.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.