Book contents
- Frontmatter
- Contents
- Preface
- Introduction
- Chapter 1 The Weyl algebra
- Chapter 2 Ideal structure of the Weyl algebra
- Chapter 3 Rings of differential operators
- Chapter 4 Jacobian Conjecture
- Chapter 5 Modules over the Weyl algebra
- Chapter 6 Differential equations
- Chapter 7 Graded and filtered modules
- Chapter 8 Noetherian rings and modules
- Chapter 9 Dimension and multiplicity
- Chapter 10 Holonomic modules
- Chapter 11 Characteristic varieties
- Chapter 12 Tensor products
- Chapter 13 External products
- Chapter 14 Inverse Image
- Chapter 15 Embeddings
- Chapter 16 Direct images
- Chapter 17 Kashiwara's theorem
- Chapter 18 Preservation of holonomy
- Chapter 19 Stability of differential equations
- Chapter 20 Automatic proof of identities
- Coda
- Appendix 1 Defining the action of a module using generators
- Appendix 2 Local inversion theorem
- References
- Index
Chapter 8 - Noetherian rings and modules
Published online by Cambridge University Press: 29 December 2009
- Frontmatter
- Contents
- Preface
- Introduction
- Chapter 1 The Weyl algebra
- Chapter 2 Ideal structure of the Weyl algebra
- Chapter 3 Rings of differential operators
- Chapter 4 Jacobian Conjecture
- Chapter 5 Modules over the Weyl algebra
- Chapter 6 Differential equations
- Chapter 7 Graded and filtered modules
- Chapter 8 Noetherian rings and modules
- Chapter 9 Dimension and multiplicity
- Chapter 10 Holonomic modules
- Chapter 11 Characteristic varieties
- Chapter 12 Tensor products
- Chapter 13 External products
- Chapter 14 Inverse Image
- Chapter 15 Embeddings
- Chapter 16 Direct images
- Chapter 17 Kashiwara's theorem
- Chapter 18 Preservation of holonomy
- Chapter 19 Stability of differential equations
- Chapter 20 Automatic proof of identities
- Coda
- Appendix 1 Defining the action of a module using generators
- Appendix 2 Local inversion theorem
- References
- Index
Summary
There is very little that one can say about a general ring and its modules. In practice an interesting structure theory will result either if the ring has a topology (which is compatible with its operations), or if it has finite dimension, or some generalization thereof. As an example of the former, we have the theory of C*-algebras. The latter class includes many important rings: algebras that are finite dimensional over a field, PI rings, artinian rings and noetherian rings. It is the last ones that we now study. In particular, we prove that the Weyl algebra is a noetherian ring.
NOETHERIAN MODULES.
In this book we shall be concerned almost exclusively with finitely generated modules. One easily checks that a homomorphic image of a finitely generated module is finitely generated. However a finitely generated module can have a submodule that is not itself finitely generated. An example is the polynomial ring in infinitely many variables K[x1, x2, …]. Taken as a module over itself this ring is a cyclic left module: it is generated by 1. However, the ideal generated by all the variables x1, x2, … cannot be finitely generated: every finite set of polynomials in K[x1, x2, …] uses up only finitely many of the variables.
We get around this problem with a definition. A left R-module is called noetherian if all its submodules are finitely generated. Examples are easy to come by: vector spaces over K are noetherian K-modules. Every ideal of the polynomial ring in one variable K[x] is a noetherian K[x]-module.
There are several equivalent ways to define noetherianness. We chose the most natural. Here are two more.
- Type
- Chapter
- Information
- A Primer of Algebraic D-Modules , pp. 65 - 73Publisher: Cambridge University PressPrint publication year: 1995