Skip to main content Accessibility help
×
  • Cited by 58
  • J. C. M. Baeten, Technische Universiteit Eindhoven, The Netherlands, T. Basten, Technische Universiteit Eindhoven, The Netherlands, M. A. Reniers, Technische Universiteit Eindhoven, The Netherlands

Book description

Process algebra is a widely accepted and much used technique in the specification and verification of parallel and distributed software systems. This book sets the standard for the field. It assembles the relevant results of most process algebras currently in use, and presents them in a unified framework and notation. The authors describe the theory underlying the development, realization and maintenance of software that occurs in parallel or distributed systems. A system can be specified in the syntax provided, and the axioms can be used to verify that a composed system has the required external behaviour. As examples, two protocols are completely specified and verified in the text: the Alternating-Bit Protocol for Data Communication, and Fischer's Protocol of Mutual Exclusion. The book serves as a reference text for researchers and graduate students in computer science, offering a complete overview of the field and referring to further literature where appropriate.

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

Bibliography
Aceto, L., Bloom, B., & Vaandrager, F.W. (1994). Turning SOS Rules into Equations. Information and Computation, 111(1), 1-52.
Aceto, L., & Fokkink, W.J. (2004). Guest Editors' Introduction: Special Issue on Structural Operational Semantics. Journal of Logic and Algebraic Programming, 60–61, 1-2.
Aceto, L., Fokkink, W.J., & Ingólfsdóttir, A. (1998). A Cook's Tour of Equational Axiomatization for Prefix Iteration. Pages 20-34 of: Nivat M. (ed), Foundations of Software Science and Computation Structures, FoSSaCS 1998, Proceedings. Lecture Notes in Computer Science, no. 1387. Springer, Berlin, Germany.
Aceto, L., Fokkink, W.J., & Verhoef, C. (2001). Structural Operational Semantics. Pages 197-292 of: Bergstra, J.A., Ponse, A., & Smolka, S.A. (eds), Handbook of Process Algebra.Elsevier Science, Amsterdam, the Netherlands.
Aceto, L., & Hennessy, M. (1992). Termination, Deadlock, and Divergence. Journal of the ACM, 39(1), 147-187.
Andova, S. (2002). Probabilistic Process Algebra. Ph.D. thesis, Eindhoven University of Technology, Department of Mathematics and Computer Science, Eindhoven, the Netherlands.
Austry, D., & Boudol, G. (1984). Algèbre de Processus et Synchronisation. Theoretical Computer Science, 30(1), 91-131. In French.
Baeten, J.C.M. (1986). Procesalgebra. Programmatuurkunde. Kluwer, Deventer, the Netherlands. In Dutch.
Baeten, J.C.M. (2003). Embedding Untimed into Timed Process Algebra: The Case for Explicit Termination. Mathematical Structures in Computer Science, 13(4), 589-618.
Baeten, J.C.M. (2005). A Brief History of Process Algebra. Theoretical Computer Science, 335(2/3), 131-146.
Baeten, J.C.M., & Basten, T. (2001). Partial-Order Process Algebra (and its Relation to Petri Nets). Pages 769-872 of: Bergstra, J.A., Ponse, A., & Smolka, S.A. (eds), Handbook ofProcess Algebra.Elsevier Science, Amsterdam, the Netherlands.
Baeten, J.C.M., & Bergstra, J.A. (1988). Global Renaming Operators in Concrete Process Algebra. Information and Computation, 78(3), 205-245.
Baeten, J.C.M., & Bergstra, J.A. (1996). Discrete Time Process Algebra. Formal Aspects ofComputing, 8(2), 188-208.
Baeten, J.C.M., & Bergstra, J.A. (1997). Process Algebra with Propositional Signals. Theoretical Computer Science, 177(2), 381-406.
Baeten, J.C.M., & Bergstra, J.A. (1998). Deadlock Behaviour in Split and ST Bisimulation Semantics. Electronic Notes in Theoretical Computer Science, 16(2), 101-114. Proceedings Expressiveness in Concurrency, 5th International Workshop, EXPRESS 1998.
Baeten, J.C.M., Bergstra, J.A., Hoare, C.A.R., Milner, R., Parrow, J., & de Simone, R. (1991). The Variety of Process Algebra. Deliverable ESPRIT Basic Research Action 3006, CONCUR. University of Edinburgh, Edinburgh, UK.
Baeten, J.C.M., Bergstra, J.A., & Klop, J.W. (1986). Syntax and Defining Equations for an Interrupt Mechanism in Process Algebra. Fundamenta Informaticae, IX(2), 127-168.
Baeten, J.C.M., Bergstra, J.A., & Klop, J.W. (1987a). Conditional Axioms and α/β-Calculus in Process Algebra. Pages 77-103 of: Wirsing, M. (ed), Formal Description of Programming Concepts - III, IFIP Conference, Proceedings.Elsevier Science, Amsterdam, the Netherlands.
Baeten, J.C.M., Bergstra, J.A., & Klop, J.W. (1987b). On the Consistency of Koomen's Fair Abstraction Rule. Theoretical Computer Science, 51(1/2), 129-176.
Baeten, J.C.M., & Bravetti, M. (2005). A Ground-Complete Axiomatization of Finite State Processes in Process Algebra. Pages 248-262 of: Abadi, M., & de Alfaro, L. (eds), CONCUR 2005 - Concurrency Theory, 16th International Conference, Proceedings. Lecture Notes in Computer Science, no. 3653. Springer, Berlin, Germany.
Baeten, J.C.M., & Bravetti, M. (2006). A Generic Process Algebra. Electronic Notes in Theoretical Computer Science, 162, 65-71. Proceedings Essays on Algebraic Process Calculi, Workshop, APC 25.
Baeten, J.C.M., Corradini, F., & Grabmayer, C.A. (2007). A Characterization of Regular Expressions under Bisimulation. Journal of the ACM, 54(2), 6.1-28.
Baeten, J.C.M., & Glabbeek, R.J. van. (1987). Merge and Termination in Process Algebra. Pages 153-172 of: Nori, K.V. (ed), Foundations of Software Technology and Theoretical Computer Science, 7th Conference, FST & TCS 1987, Proceedings. Lecture Notes in Computer Science, no. 287. Springer, Berlin, Germany.
Baeten, J.C.M., & Middelburg, C.A. (2001). Process Algebra with Timing: Real Time and Discrete Time. Pages 627-684 of: Bergstra, J.A., Ponse, A., & Smolka, S.A. (eds), Handbook ofProcess Algebra.Elsevier Science, Amsterdam, the Netherlands.
Baeten, J.C.M., & Middelburg, C.A. (2002). Process Algebra with Timing. Monographs in Theoretical Computer Science. An EATCS Series. Springer, Berlin, Germany.
Baeten, J.C.M., Mousavi, M.R., & Reniers, M.A. (2005). Timing the Untimed: Terminating Successfully while Being Conservative. Pages 251-279 of: Middeldorp, A., Oostrom, V. van, Raamsdonk, F. van, & Vrijer, R. de (eds), Processes, Terms and Cycles: Steps on the Road to Infinity, Essays Dedicated to Jan Willem Klop on the Occasion ofhis 60th Birthday. Lecture Notes in Computer Science, no. 3838. Springer, Berlin, Germany.
Baeten, J.C.M., & Reniers, M.A. (2004). Timed Process Algebra (With a Focus on Explicit Termination and Relative-Timing). Pages 59-97 of: Bernardo, M., & Corradini, F. (eds), Formal Methods for the Design of Real-Time Systems. Lecture Notes in Computer Science, no. 3185. Springer, Berlin, Germany.
Baeten, J.C.M., & Reniers, M.A. (2007). Duplication of Constants in Process Algebra. Journal of Logic and Algebraic Programming, 70(2), 151-171.
Baeten, J.C.M., & Verhoef, C. (1993). A Congruence Theorem for Structured Operational Semantics with Predicates. Pages 477-492 of: Best, E. (ed), Concurrency Theory, 4th International Conference, CONCUR 1993, Proceedings. Lecture Notes in Computer Science, no. 715. Springer, Berlin, Germany.
Baeten, J.C.M., & Verhoef, C. (1995). Concrete Process Algebra. Pages 149-269 of: Abramsky, S., Gabbay, D.M., & Maibaum, T.S.E. (eds), Handbook of Logic in Computer Science, vol. 4. Oxford University Press, Oxford, UK.
Baeten, J.C.M., & Weijland, W.P. (1990). Process Algebra. Cambridge Tracts in Theoretical Computer Science, no. 18. Cambridge University Press, Cambridge, UK.
Bakker, J.W. de, & Zucker, J.I. (1982a). Denotational Semantics of Concurrency. Pages 153-158 of: Theory of Computing, 14th Annual ACM Symposium, Proceedings. ACM, New York, NY, USA.
Bakker, J.W. de, & Zucker, J.I. (1982b). Processes and the Denotational Semantics of Concurrency. Information and Control, 54(1/2), 70-120.
Bartlett, K.A., Scantlebury, R.A., & Wilkinson, P.T. (1969). A Note on Reliable Full-Duplex Transmission over Half-Duplex Lines. Communications ofthe ACM, 12(5), 260-261.
Basten, T. (1996). Branching Bisimilarity is an Equivalence Indeed!Information Processing Letters, 58(3), 141-147.
Basten, T. (1998). In Terms ofNets: System Design with Petri Nets and Process Algebra. Ph.D. thesis, Eindhoven University of Technology, Department of Mathematics and Computing Science, Eindhoven, the Netherlands.
Bekic, H. (1971). Towards a Mathematical Theory of Processes. Tech. rept. TR 25.125. IBM Laboratory Vienna, Vienna, Austria.
Bekic, H. (1984). Programming Languages and Their Definition, H., Beki (1936-1982), Selected Papers edited by C.B. Jones. Lecture Notes in Computer Science, no. 177. Springer, Berlin, Germany.
Bergstra, J.A., Bethke, I., & Ponse, A. (1994). Process Algebra with Iteration and Nesting. The Computer Journal, 37(4), 243-258.
Bergstra, J.A., Fokkink, W.J., & Ponse, A. (2001). Process Algebra with Recursive Operations. Pages 333-389 of: Bergstra, J.A., Ponse, A., & Smolka, S.A. (eds), Handbook ofProcess Algebra.Elsevier Science, Amsterdam, the Netherlands.
Bergstra, J.A., & Klop, J.W. (1982). Fixed Point Semantics in Process Algebra. Tech. rept. IW 208. Mathematical Centre, Amsterdam, the Netherlands.
Bergstra, J.A., & Klop, J.W. (1984a). Process Algebra for Synchronous Communication. Information and Control, 60(1/3), 109-137.
Bergstra, J.A., & Klop, J.W. (1984b). The Algebra of Recursively Defined Processes and the Algebra of Regular Processes. Pages 82-95 of: Paredaens, J. (ed), Automata, Languages and Programming, 11th Colloquium, ICALP 1984, Proceedings. Lecture Notes in Computer Science, no. 172. Springer, Berlin, Germany.
Bergstra, J.A., & Klop, J.W. (1985). Algebra of Communicating Processes with Abstraction. Theoretical Computer Science, 37(1), 77-121.
Bergstra, J.A., & Klop, J.W. (1986a). Algebra of Communicating Processes. Pages 89-138 of: Bakker, J.W. de, Hazewinkel, M., & Lenstra, J.K. (eds), Mathematics and Computer Science I, CWI Symposium, Proceedings. CWI Monographs, no. 1. Elsevier Science, Amsterdam, the Netherlands.
Bergstra, J.A., & Klop, J.W. (1986b). Process Algebra: Specification and Verification in Bisimulation Semantics. Pages 61-94 of: Hazewinkel, M., Lenstra, J.K., & Meertens, L.G.L.T. (eds), Mathematics and Computer Science II, CWI Symposium, Proceedings. CWI Monographs, no. 4. Elsevier Science, Amsterdam, the Netherlands.
Bergstra, J.A., & Klop, J.W. (1986c). Verification of an Alternating Bit Protocol by Means of Process Algebra. Pages 9-23 of: Bibel, W., & Jantke, K.P. (eds), Mathematical Methods of Specification and Synthesis of Software Systems 1985, International Spring School, Proceedings. Lecture Notes in Computer Science, no. 215. Springer, Berlin, Germany.
Bergstra, J.A., & Klop, J.W. (1988). A Complete Inference System for Regular Processes with Silent Moves. Pages 21-81 of: Drake, F.R., & Truss, J.K. (eds), Logic Colloquium, Proceedings.Elsevier Science, Amsterdam, the Netherlands.
Bergstra, J.A., & Klop, J.W. (1992). A Convergence Theorem in Process Algebra. Pages 164-195 of: Bakker, J.W. de, & Rutten, J.J.M.M. (eds), Ten Years of Concurrency Semantics.World Scientific, Singapore.
Bergstra, J.A., Klop, J.W., & Olderog, E.-R. (1987). Failures without Chaos: A new Process Semantics for Fair Abstraction. Pages 77-103 of: Wirsing, M. (ed), Formal Description of Programming Concepts - III, IFIP Conference, Proceedings.Elsevier Science, Amsterdam, the Netherlands.
Bergstra, J.A., Klop, J.W., & Tucker, J.V. (1985). Process Algebra with Asynchronous Communication Mechanisms. Pages 76-95 of: Brookes, S.D., Roscoe, A.W., & Winskel, G. (eds), Seminar on Concurrency, Proceedings. Lecture Notes in Computer Science, no. 197. Springer, Berlin, Germany.
Bergstra, J.A., & Middelburg, C.A. (2005). Process Algebra for Hybrid Systems. Theoretical Computer Science, 335(2/3), 215-280.
Bergstra, J.A., Ponse, A., & Zwaag, M.B. van der (2003). Branching Time and Orthogonal Bisimulation Equivalence. Theoretical Computer Science, 309(1-3), 313-355.
Bergstra, J.A., & Tiuryn, J. (1987). Process Algebra Semantics for Queues. Fundamenta Informaticae, X, 213-224.
Bergstra, J.A., & Tucker, J.V. (1984). Top Down Design and the Algebra of Communicating Processes. Science of Computer Programming, 5(2), 171-199.
Bosscher, D.J.B. (1997). Grammars Modulo Bisimulation. Ph.D. thesis, University of Amsterdam, Amsterdam, the Netherlands.
Bradfield, J.C., & Stirling, C. (2001). Modal Logics and Mu-Calculi: An Introduction. Pages 293-330 of: Bergstra, J.A., Ponse, A., & Smolka, S.A. (eds), Handbook of Process Algebra.Elsevier Science, Amsterdam, the Netherlands.
Brookes, S.D. (1983). On the Relationship of CCS and CSP. Pages 83-96 of: Diaz, J. (ed), Automata, Languages and Programming, 10th Colloquium, ICALP 1983, Proceedings. Lecture Notes in Computer Science, no. 154. Springer, Berlin, Germany.
Brookes, S.D., Hoare, C.A.R., & Roscoe, A.W. (1984). A Theory of Communicating Sequential Processes. Journal of the ACM, 31(3), 560-599.
Broy, M. (1987). Views on Queues. Science of Computer Programming, 11(1), 65-86.
Bundy, A. (1999). A Survey of Automated Deduction. Pages 153-174 of: Wooldridge, M.J., & Veloso, M. (eds), Artificial Intelligence Today: Recent Trends and Developments. Lecture Notes in Computer Science, vol. 1600. Springer, Berlin, Germany.
Burris, S., & Sankappanavar, H.P. (1981). A Course in Universal Algebra. Graduate Texts in Mathematics. Springer, Berlin, Germany.
Christensen, S. (1993). Decidability and Decomposition in Process Algebras. Ph.D. thesis, University of Edinburgh, Department of Computer Science, Edinburgh, UK.
Clarke, E.M., Grumberg, O., & Peled, D.A. (2000). Model Checking.The MIT Press, Cambridge, MA, USA.
Cleaveland, R., Luttgen, G., & Natarajan, V. (2001). Priority in Process Algebra. Pages 711-765 of: Bergstra, J.A., Ponse, A., & Smolka, S.A. (eds), Handbook of Process Algebra.Elsevier Science, Amsterdam, the Netherlands.
Copi, I.M., Elgot, C.C., & Wright, J.B. (1958). Realization of Events by Logical Nets. Journal of the ACM, 5(2), 181-196.
Corradini, F., D'Ortenzio, D., & Inverardi, P. (1999). On the Relationships among Four Timed Process Algebras. Fundamenta Informaticae, 38(4), 377-395.
D'Argenio, P.R. (1995). τ-Angelic Choice for Process Algebras (Revised Edition). Tech. rept., Universidad Nacional de La Plata, LIFIA, Depto. de Informática, Fac. de Cs. Exactas, La Plata, Buenos Aires, Argentina.
Denvir, B.T., Harwood, W.T., Jackson, M.I., & Ray, M.J. (eds). (1985). The Analysis of Concurrent Systems, Proceedings. Lecture Notes in Computer Science, no. 207. Springer, Berlin, Germany.
Dershowitz, N., & Jouannaud, J.-P. (1990). Rewrite Systems. Pages 243-320 of: Leeuwen, J. van (ed), Handbook of Theoretical Computer Science, vol. B: Formal Models and Semantics. Elsevier Science, Amsterdam, the Netherlands.
Dijkstra, E.W. (1975). Guarded Commands, Nondeterminacy, and Formal Derivation of Programs. Communications of the ACM, 18(8), 453-457.
Dijkstra, E.W. (1976). A Discipline ofProgramming.Prentice Hall, Englewood Cliffs, NJ, USA.
Floyd, R.W. (1967). Assigning Meanings to Programs. Pages 19-32 of: Schwartz, J.T. (ed), Symposium in Applied Mathematics, XIX, Proceedings. Mathematical Aspects of Computer Science. American Mathematical Society, Providence, RI, USA.
Fokkink, W.J. (1994). A Complete Equational Axiomatisation for Prefix Iteration. Information Processing Letters, 52(6), 333-337.
Fokkink, W.J. (2000). Introduction to Process Algebra. Texts in Theoretical Computer Science. An EATCS Series. Springer, Berlin, Germany.
Francez, N. (1986). Fairness.Springer, Berlin, Germany.
Glabbeek, R.J. van. (1987). Bounded Nondeterminism and the Approximation Induction Principle in Process Algebra. Pages 336-247 of: Brandenburg, F.J., Vidal-Naquet, G., & Wirsing, M. (eds), Theoretical Aspects of Computer Science, 4th Annual Symposium, STACS 1987, Proceedings. Lecture Notes in Computer Science, no. 247. Springer, Berlin, Germany.
Glabbeek, R.J. van. (1990). Comparative Concurrency Semantics, with Refinement of Actions. Ph.D. thesis, Vrije Universiteit, Amsterdam, the Netherlands.
Glabbeek, R.J. van. (1993). The Linear Time - Branching Time Spectrum II: The Semantics of Sequential Systems with Silent Moves (Extended Abstract). Pages 66-81 of: Best, E. (ed), Concurrency Theory, 4th International Conference, CONCUR 1993, Proceedings. Lecture Notes in Computer Science, vol. 715. Springer, Berlin, Germany.
Glabbeek, R.J. van. (1994). What is Branching Time Semantics and Why to Use it?Bulletin of the EATCS, 53, 190-198.
Glabbeek, R.J. van. (1997). Notes on the Methodology of CCS and CSP. Theoretical Computer Science, 177(2), 329-350.
Glabbeek, R.J. van. (2001). The Linear Time - Branching Time Spectrum I: The Semantics of Concrete, Sequential Processes. Pages 3-100 of: Bergstra, J.A., Ponse, A., & Smolka, S.A. (eds), Handbook of Process Algebra.Elsevier Science, Amsterdam, the Netherlands.
Glabbeek, R.J. van, Luttik, S.P., & Trčka, N. (2008). Branching Bisimilarity with Explicit Divergence. Tech. rept. CS-R-08-25. Eindhoven University of Technology, Department of Mathematics and Computer Science, Eindhoven, the Netherlands.
Glabbeek, R.J. van, & Vaandrager, F.W. (1987). Petri Net Models for Algebraic Theories of Concurrency. Pages 224-242 of: Bakker, J.W. de, Nijman, A.J., & Treleaven, P.C. (eds), Parallel Architectures and Languages Europe, PARLE 1987, Proceedings, Volume II. Lecture Notes in Computer Science, no. 259. Springer, Berlin, Germany.
Glabbeek, R.J. van, & Vaandrager, F.W. (1989). Modular Specifications in Process Algebra — With Curious Queues. Pages 465-506 of: Wirsing, M., & Bergstra, J.A. (eds), Algebraic Methods: Theory, Tools and Applications. Lecture Notes in Computer Science, no. 394. Springer, Berlin, Germany.
Glabbeek, R.J. van, & Vaandrager, F.W. (1993). Modular Specification of Process Algebras. Theoretical Computer Science, 113(2), 293-348.
Glabbeek, R.J. van, & Weijland, W.P. (1989). Branching Time and Abstraction in Bisimulation Semantics (extended abstract). Pages 613-618 of: Ritter, G.X. (ed), Information Processing 89, 11th IFIP World Computer Congress, Proceedings.Elsevier Science Publishers B.V., North-Holland, Amsterdam, the Netherlands. Full version appeared as (Van Glabbeek & Weijland, 1996).
Glabbeek, R.J. van, & Weijland, W.P. (1996). Branching Time and Abstraction in Bisimulation Semantics. Journal of the ACM, 43(3), 555-600.
Gorrieri, R., & Laneve, C. (1995). Split and ST Bisimulation Semantics. Information and Computation, 118(2), 272-288.
Groote, J.F., Matthijssen, A., Weerdenburg, M. van, & Usenko, Y.S. (2006). From /xCRL to mCRL2: Motivation and Outline. Electronic Notes in Theoretical Computer Science, 162, 191-196. Proceedings Essays on Algebraic Process Calculi, Workshop, APC 25.
Groote, J.F., & Ponse, A. (1995). The Syntax and Semantics of μCRL. Pages 26-62 of: Ponse, A., Verhoef, C., & Vlijmen, S.F.M. van (eds), Algebra of Communicating Processes, ACP 1994, Proceedings. Workshops in Computing Series. Springer, Berlin, Germany.
Groote, J.F., & Reniers, M.A. (2001). Algebraic Process Verification. Pages 1151-1208 of: Bergstra, J.A., Ponse, A., & Smolka, S.A. (eds), Handbook of Process Algebra.Elsevier Science, Amsterdam, the Netherlands.
Halpern, J.Y., & Zuck, L.D. (1987). A Little Knowledge Goes a Long Way: Simple Knowledge-Based Derivations and Correctness Proofs for a Family of Protocols (Extended Abstract). Pages 269-280 of: Principles ofDistributed Computing, 6th Annual ACMSymposium, PODC 1987, Proc.ACM, New York, NY, USA.
Heijenoort, J. van. (1967). From Frege to Gödel: A Sourcebook in Mathematical Logic, 1879-1931.Harvard University Press, Cambridge, MA, USA.
Hennessy, M. (1981). A Term Model for Synchronous Processes. Information and Control, 51(1), 58-75.
Hennessy, M. (1988a). Algebraic Theory ofProcesses.MIT Press, Cambridge, MA, USA.
Hennessy, M. (1988b). Axiomatising Finite Concurrent Processes. SIAM Journal on Computing, 17(5), 997-1017.
Hennessy, M., & Milner, R. (1980). On Observing Nondeterminism and Concurrency. Pages 299-309 of: Bakker, J.W. de, & Leeuwen, J. van (eds), Automata, Languages and Programming, 7th Colloquium, ICALP 1980, Proceedings. Lecture Notes in Computer Science, no. 85. Springer, Berlin, Germany.
Hennessy, M., & Regan, T. (1995). A Process Algebra for Timed Systems. Information and Computation, 117(2), 221-239.
Hoare, C.A.R. (1969). An Axiomatic Basis for Computer Programming. Communications of the ACM, 12(10), 576-580.
Hoare, C.A.R. (1978). Communicating Sequential Processes. Communications of the ACM, 21(8), 666-677.
Hoare, C.A.R. (1980). A Model for Communicating Sequential Processes. Pages 229-254 of: McKeag, R.M., & Macnaghten, A.M. (eds), On the Construction of Programs.Cambridge University Press, Cambridge, UK.
Hoare, C.A.R. (1985). Communicating Sequential Processes.Prentice Hall, Englewood Cliffs, NJ, USA.
Hussman, H. (1985). Unification in Conditional-Equational Theories. Pages 543-553 of: Caviness, B.F. (ed), European Conference on Computer Algebra, 10th International Conference, EUROCAL 1985, Proceedings Vol. 2: Research Contributions. Lecture Notes in Computer Science, no. 204. Springer, Berlin, Germany.
Jonsson, B., Yi, Wang, & Larsen, K.G. (2001). Probabilistic Extensions of Process Algebras. Pages 685-710 of: Bergstra, J.A., Ponse, A., & Smolka, S.A. (eds), Handbook of Process Algebra.Elsevier Science, Amsterdam, the Netherlands.
Jouannaud, J.-P., & Muñoz, M. (1984). Termination of a Set of Rules Modulo a Set of Equations. Pages 175-193 of: Shostak, R.E. (ed), Automated Deduction, 7th International Conference, Proceedings. Lecture Notes in Computer Science, no. 170. Springer, Berlin, Germany.
Khadim, U. (2008). Process Algebra for Hybrid Systems: Comparison and Development. Ph.D. thesis, Eindhoven University of Technology, Department of Mathematics and Computer Science, Eindhoven, the Netherlands.
Kleene, S.C. (1956). Representation of Events in Nerve Nets and Finite Automata. Pages 3-41 of: Shannon, C.E., & McCarthy, J. (eds), Automata Studies.Princeton University Press, Princeton, NJ, USA.
Klop, J.W. (1987). Term Rewriting Systems: A Tutorial. Bulletin of the EATCS, 32, 143-182.
Koomen, C.J. (1985). Algebraic Specification and Verification of Communication Protocols. Science ofComputer Programming, 5(1), 1-36.
Koymans, C.P.J., & Mulder, J.C. (1990). A Modular Approach to Protocol Verification Using Process Algebra. Pages 261-306 of: Baeten, J.C.M. (ed), Applications of Process Algebra.Cambridge University Press, Cambridge, UK.
Koymans, C.P.J., & Vrancken, J.L.M. (1985). Extending Process Algebra with the Empty Process 6. Logic Group Preprint Series 1. Utrecht University, Philosophy Department, Utrecht, the Netherlands.
Kranakis, E. (1987). Fixed Point Equations with Parameters in the Projective Model. Information and Computation, 75(3), 264-288.
Lamport, L. (1987). A Fast Mutual Exclusion Algorithm. ACM Transactions on Computer Systems, 5(1), 1-11.
Larsen, K.G., & Milner, R. (1987). Verifying a Protocol Using Relativized Bisimulation. Pages 126-135 of: Ottmann, Th. (ed), Automata, Languages and Programming, 14th International Colloquium, ICALP 1987, Proceedings. Lecture Notes in Computer Science, no. 267. Springer, Berlin, Germany.
Larsen, K.G., & Skou, A. (1991). Bisimulation through Probabilistic Testing. Information and Computation, 94(1), 1-28.
Linz, P. (2001). An Introduction to Formal Languages and Automata.Jones and Bartlett, Sudbury, MA, USA.
Luttik, S.P. (2002). Choice Quantification in Process Algebra. Ph.D. thesis, University of Amsterdam, Department of Computer Science, Amsterdam, the Netherlands.
MacLane, S., & Birkhoff, G. (1967). Algebra.Macmillan, London, UK.
Markovski, J. (2008). Real and Stochastic Time in Process Algebras for Performance Evaluation. Ph.D. thesis, Eindhoven University of Technology, Department of Mathematics and Computer Science, Eindhoven, the Netherlands.
Mauw, S., & Mulder, J.C. (1994). Regularity of BPA-Systems is Decidable. Pages 34-47 of: Jonsson, B., & Parrow, J. (eds), Concurrency Theory, 5th International Conference, CONCUR 1994, Proceedings. Lecture Notes in Computer Science, no. 836. Springer, Berlin, Germany.
Mauw, S., & Veltink, G.J. (eds). (1993). Algebraic Specification of Communication Protocols. Cambridge Tracts in Theoretical Computer Science, no. 36. Cambridge University Press, Cambridge, UK.
McCarthy, J. (1963). A Basis for a Mathematical Theory of Computation. Pages 33-70 of: Braffort, P., & Hirshberg, D. (eds), Computer Programming and Formal Systems.North-Holland, Amsterdam, the Netherlands.
Milne, G.J. (1982). Abstraction and Nondeterminism in Concurrent Systems. Pages 358-364 of: Distributed Computing Systems, 3rd International Conference, ICDCS 1982, Proceedings.IEEE Computer Society Press, Los Alamitos, CA, USA.
Milne, G.J. (1983). CIRCAL: A Calculus for Circuit Description. Integration, the VLSI Journal, 1(2-3), 121-160.
Milne, G.J., & Milner, R. (1979). Concurrent Processes and Their Syntax. Journal of the ACM, 26(2), 302-321.
Milner, R. (1973). An Approach to the Semantics of Parallel Programs. Pages 285-301 of: Convegno di Informatica Teoretica, Proceedings.Instituto di Elaborazione della Informazione, Pisa, Italy.
Milner, R. (1975). Processes: A Mathematical Model of Computing Agents. Pages 157-174 of: Rose, H.E., & Shepherdson, J.C. (eds), Logic Colloquium, Proceedings.North-Holland, Amsterdam, the Netherlands.
Milner, R. (1978a). Algebras for Communicating Systems. In AFCET/SMF Joint Colloquium in Applied Mathematics, Proceedings. Paris, France. Also available as Tech. rept. CSR-25-78, University of Edinburgh, Computer Science Department, Edinburgh, UK, 1978.
Milner, R. (1978b). Synthesis of Communicating Behaviour. Pages 71-83 of: Winkowski, J. (ed), Mathematical Foundations ofComputer Science, 7th Symposium, MFCS 1978, Proceedings. Lecture Notes in Computer Science, no. 64. Springer, Berlin, Germany.
Milner, R. (1979). Flowgraphs and Flow Algebras. Journal of the ACM, 26(4), 794-818.
Milner, R. (1980). A Calculus ofCommunicating Systems. Lecture Notes in Computer Science, no. 92. Springer, Berlin, Germany.
Milner, R. (1983). Calculi for Synchrony and Asynchrony. Theoretical Computer Science, 25(3), 267-310.
Milner, R. (1989). Communication and Concurrency.Prentice Hall, Englewood Cliffs, NJ, USA.
Milner, R. (1999). Communicating and Mobile Systems: the Pi-Calculus.Cambridge University Press, Cambridge, UK.
Moller, F. (1989). Axioms for Concurrency. Ph.D. thesis, University of Edinburgh, Computer Science Department, Edinburgh, UK.
Moller, F., & Tofts, C. (1990). A Temporal Calculus of Communicating Systems. Pages 401-415 of: Baeten, J.C.M., & Klop, J.W. (eds), Theories of Concurrency: Unification and Extension, CONCUR 1990, Proceedings. Lecture Notes in Computer Science, no. 458. Springer, Berlin, Germany.
Mousavi, M.R., & Reniers, M.A. (2005). Orthogonal Extensions in Structural Operational Semantics. Pages 1214-1225 of: Automata, Languages and Programming, 32nd International Colloquium, ICALP 2005, Proceedings. Lecture Notes in Computer Science, no. 3580. Springer, Berlin, Germany.
Mousavi, M.R., Reniers, M.A., & Groote, J.F. (2007). SOS Formats and Meta-Theory: 20 Years After. Theoretical Computer Science, 373(3), 238-272.
Nicollin, X., & Sifakis, J. (1994). The Algebra of Timed Processes ATP: Theory and Application. Information and Computation, 114(1), 131-178.
Oguztuzun, H.M. (1989). A Game Characterization of the Observational Equivalence of Processes. Pages 195-196 of: Algebraic Methodology and Software Technology, 1st Conference, AMAST1989, Proceedings.Iowa City, IA, USA.
Osborne, M., & Rubinstein, A. (1994). A Course in Game Theory. MIT Press, Cambridge, MA, USA.
Owicki, S., & Gries, D. (1976). Verifying Properties of Parallel Programs: An Axiomatic Approach. Communications of the ACM, 19(5), 279-285.
Park, D.M.R. (1981). Concurrency and Automata on Infinite Sequences. Pages 167-183 of: Deussen, P. (ed), Theoretical Computer Science, 5th GIConference, Proc. Lecture Notes in Computer Science, no. 104. Springer, Berlin, Germany.
Parrow, J. (1985). Fairness Properties in Process Algebra — With Applications in Communication Protocol Verification. Ph.D. thesis, Uppsala University, Department of Computer Systems, Uppsala, Sweden.
Petri, C.A. (1962). Kommunikation mit Automaten. Ph.D. thesis, Institut fuer Instrumentelle Mathematik, Bonn, Germany. In German.
Plotkin, G.D. (1976). A Powerdomain Construction. SIAM Journal of Computing, 5(3), 452-487.
Plotkin, G.D. (1981). A Structural Approach to Operational Semantics. Tech. rept. DAIMI FN-19. Aarhus University, Aarhus, Denmark.
Ponse, A. (1992). Process Algebras with Data. Ph.D. thesis, University of Amsterdam, Department of Computer Science, Amsterdam, the Netherlands.
Pratt, V.R. (1982). On the Composition of Processes. Pages 213-223 of: Principles of Programming Languages, 9th ACM SIGPLAN-SIGACT Symposium, POPL 1982, Proceedings.ACM, New York, NY, USA.
Quemada, J., de Frutos, D., & Azcorra, A. (1993). TIC: A Timed Calculus. Formal Aspects of Computing, 5(3), 224-252.
Reed, G.M., & Roscoe, A.W. (1988). A Timed Model for Communicating Sequential Processes. Theoretical Computer Science, 58(1-3), 249-261.
Sangiorgi, D., & Walker, D.J. (2001). The Pi-Calculus: A Theory of Mobile Processes.Cambridge University Press, Cambridge, UK.
Schneider, S.A. (2000). Concurrent and Real-Time Systems (the CSP Approach).John Wiley & Sons, Chichester, UK.
Scott, D.S., & Strachey, C. (1971). Towards a Mathematical Semantics for Computer Languages. Pages 19-46 of: Fox, J. (ed), Computers and Automata, Symposium, Proceedings.Polytechnic Institute of Brooklyn Press, New York, NY, USA.
Sewell, P. (1997). Nonaxiomatisability of Equivalences over Finite State Processes. Annals of Pure and Applied Logic, 90(1-3), 163-191.
Smullyan, R. (1982). The Lady or the Tiger? And Other Logic Puzzles Including a Mathematical Novel that Features Gödel's Great Discovery.Alfred A. Knopf, Inc., New York, NY, USA.
Troeger, D.R. (1993). Step Bisimulation is Pomset Equivalence on a Parallel Language Without Explicit Internal Choice. Mathematical Structures in Computer Science, 3(1), 25-62.
Usenko, Y.S. (2002). Linearization in muCRL. Ph.D. thesis, Eindhoven University of Technology, Department of Mathematics and Computer Science, Eindhoven, the Netherlands.
Vaandrager, F.W. (1986). Verification oofTwo Communication Protocols by Means of Process Algebra. Tech. rept. CS-R8608. CWI, Amsterdam, the Netherlands.
Vereijken, J.J. (1997). Discrete-Time Process Algebra. Ph.D. thesis, Eindhoven University of Technology, Department of Mathematics and Computer Science, Eindhoven, the Netherlands.
Verhoef, C. (1994). A General Conservative Extension Theorem in Process Algebra. Pages 149-168 of: Olderog, E.-R. (ed), Programming Concepts, Methods and Calculi, IFIP TC2/WG2.1/WG2.2/WG2.3 Working Conference, PROCOMET 1994, Proceedings. IFIP Transactions, vol. A-56. North-Holland, Amsterdam, the Netherlands.
Vrancken, J.L.M. (1997). The Algebra of Communicating Processes with Empty Process. Theoretical Computer Science, 177(2), 287-328.
Walker, D.J. (1990). Bisimulation and Divergence. Information and Computation, 85(2), 202-241.
Weijland, W.P. (1989). The Algebra of Synchronous Processes. Fundamenta Informaticae, XII, 139-162.
Winskel, G. (1982). Event Structure Semantics for CCS and Related Languages. Pages 561-576 of: Nielsen, M., & Schmidt, E.M. (eds), Automata, Languages and Programming, 9th Colloquium, ICALP 1982, Proceedings. Lecture Notes in Computer Science, no. 140. Springer, Berlin, Germany.
Yi, Wang (1991). CCS + Time = An Interleaving Model for Real Time Systems. Pages 217-228 of: Leane Albert, J., Monien, B., & Rodriguez Artalejo, M. (eds), Automata, Languages and Programming, 18th International Colloquium, ICALP 1991, Proceedings. Lecture Notes in Computer Science, no. 510. Springer, Berlin, Germany.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.