Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T06:33:30.267Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  05 July 2014

J. C. M. Baeten
Affiliation:
Technische Universiteit Eindhoven, The Netherlands
T. Basten
Affiliation:
Technische Universiteit Eindhoven, The Netherlands
M. A. Reniers
Affiliation:
Technische Universiteit Eindhoven, The Netherlands
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aceto, L., Bloom, B., & Vaandrager, F.W. (1994). Turning SOS Rules into Equations. Information and Computation, 111(1), 1-52.CrossRefGoogle Scholar
Aceto, L., & Fokkink, W.J. (2004). Guest Editors' Introduction: Special Issue on Structural Operational Semantics. Journal of Logic and Algebraic Programming, 60–61, 1-2.Google Scholar
Aceto, L., Fokkink, W.J., & Ingólfsdóttir, A. (1998). A Cook's Tour of Equational Axiomatization for Prefix Iteration. Pages 20-34 of: Nivat M. (ed), Foundations of Software Science and Computation Structures, FoSSaCS 1998, Proceedings. Lecture Notes in Computer Science, no. 1387. Springer, Berlin, Germany.Google Scholar
Aceto, L., Fokkink, W.J., & Verhoef, C. (2001). Structural Operational Semantics. Pages 197-292 of: Bergstra, J.A., Ponse, A., & Smolka, S.A. (eds), Handbook of Process Algebra.Elsevier Science, Amsterdam, the Netherlands.Google Scholar
Aceto, L., & Hennessy, M. (1992). Termination, Deadlock, and Divergence. Journal of the ACM, 39(1), 147-187.CrossRefGoogle Scholar
Andova, S. (2002). Probabilistic Process Algebra. Ph.D. thesis, Eindhoven University of Technology, Department of Mathematics and Computer Science, Eindhoven, the Netherlands.Google Scholar
Austry, D., & Boudol, G. (1984). Algèbre de Processus et Synchronisation. Theoretical Computer Science, 30(1), 91-131. In French.CrossRefGoogle Scholar
Baeten, J.C.M. (1986). Procesalgebra. Programmatuurkunde. Kluwer, Deventer, the Netherlands. In Dutch.Google Scholar
Baeten, J.C.M. (2003). Embedding Untimed into Timed Process Algebra: The Case for Explicit Termination. Mathematical Structures in Computer Science, 13(4), 589-618.CrossRefGoogle Scholar
Baeten, J.C.M. (2005). A Brief History of Process Algebra. Theoretical Computer Science, 335(2/3), 131-146.CrossRefGoogle Scholar
Baeten, J.C.M., & Basten, T. (2001). Partial-Order Process Algebra (and its Relation to Petri Nets). Pages 769-872 of: Bergstra, J.A., Ponse, A., & Smolka, S.A. (eds), Handbook ofProcess Algebra.Elsevier Science, Amsterdam, the Netherlands.Google Scholar
Baeten, J.C.M., & Bergstra, J.A. (1988). Global Renaming Operators in Concrete Process Algebra. Information and Computation, 78(3), 205-245.CrossRefGoogle Scholar
Baeten, J.C.M., & Bergstra, J.A. (1996). Discrete Time Process Algebra. Formal Aspects ofComputing, 8(2), 188-208.Google Scholar
Baeten, J.C.M., & Bergstra, J.A. (1997). Process Algebra with Propositional Signals. Theoretical Computer Science, 177(2), 381-406.CrossRefGoogle Scholar
Baeten, J.C.M., & Bergstra, J.A. (1998). Deadlock Behaviour in Split and ST Bisimulation Semantics. Electronic Notes in Theoretical Computer Science, 16(2), 101-114. Proceedings Expressiveness in Concurrency, 5th International Workshop, EXPRESS 1998.CrossRefGoogle Scholar
Baeten, J.C.M., Bergstra, J.A., Hoare, C.A.R., Milner, R., Parrow, J., & de Simone, R. (1991). The Variety of Process Algebra. Deliverable ESPRIT Basic Research Action 3006, CONCUR. University of Edinburgh, Edinburgh, UK.Google Scholar
Baeten, J.C.M., Bergstra, J.A., & Klop, J.W. (1986). Syntax and Defining Equations for an Interrupt Mechanism in Process Algebra. Fundamenta Informaticae, IX(2), 127-168.Google Scholar
Baeten, J.C.M., Bergstra, J.A., & Klop, J.W. (1987a). Conditional Axioms and α/β-Calculus in Process Algebra. Pages 77-103 of: Wirsing, M. (ed), Formal Description of Programming Concepts - III, IFIP Conference, Proceedings.Elsevier Science, Amsterdam, the Netherlands.Google Scholar
Baeten, J.C.M., Bergstra, J.A., & Klop, J.W. (1987b). On the Consistency of Koomen's Fair Abstraction Rule. Theoretical Computer Science, 51(1/2), 129-176.CrossRefGoogle Scholar
Baeten, J.C.M., & Bravetti, M. (2005). A Ground-Complete Axiomatization of Finite State Processes in Process Algebra. Pages 248-262 of: Abadi, M., & de Alfaro, L. (eds), CONCUR 2005 - Concurrency Theory, 16th International Conference, Proceedings. Lecture Notes in Computer Science, no. 3653. Springer, Berlin, Germany.Google Scholar
Baeten, J.C.M., & Bravetti, M. (2006). A Generic Process Algebra. Electronic Notes in Theoretical Computer Science, 162, 65-71. Proceedings Essays on Algebraic Process Calculi, Workshop, APC 25.CrossRefGoogle Scholar
Baeten, J.C.M., Corradini, F., & Grabmayer, C.A. (2007). A Characterization of Regular Expressions under Bisimulation. Journal of the ACM, 54(2), 6.1-28.CrossRefGoogle Scholar
Baeten, J.C.M., & Glabbeek, R.J. van. (1987). Merge and Termination in Process Algebra. Pages 153-172 of: Nori, K.V. (ed), Foundations of Software Technology and Theoretical Computer Science, 7th Conference, FST & TCS 1987, Proceedings. Lecture Notes in Computer Science, no. 287. Springer, Berlin, Germany.Google Scholar
Baeten, J.C.M., & Middelburg, C.A. (2001). Process Algebra with Timing: Real Time and Discrete Time. Pages 627-684 of: Bergstra, J.A., Ponse, A., & Smolka, S.A. (eds), Handbook ofProcess Algebra.Elsevier Science, Amsterdam, the Netherlands.Google Scholar
Baeten, J.C.M., & Middelburg, C.A. (2002). Process Algebra with Timing. Monographs in Theoretical Computer Science. An EATCS Series. Springer, Berlin, Germany.CrossRefGoogle Scholar
Baeten, J.C.M., Mousavi, M.R., & Reniers, M.A. (2005). Timing the Untimed: Terminating Successfully while Being Conservative. Pages 251-279 of: Middeldorp, A., Oostrom, V. van, Raamsdonk, F. van, & Vrijer, R. de (eds), Processes, Terms and Cycles: Steps on the Road to Infinity, Essays Dedicated to Jan Willem Klop on the Occasion ofhis 60th Birthday. Lecture Notes in Computer Science, no. 3838. Springer, Berlin, Germany.Google Scholar
Baeten, J.C.M., & Reniers, M.A. (2004). Timed Process Algebra (With a Focus on Explicit Termination and Relative-Timing). Pages 59-97 of: Bernardo, M., & Corradini, F. (eds), Formal Methods for the Design of Real-Time Systems. Lecture Notes in Computer Science, no. 3185. Springer, Berlin, Germany.Google Scholar
Baeten, J.C.M., & Reniers, M.A. (2007). Duplication of Constants in Process Algebra. Journal of Logic and Algebraic Programming, 70(2), 151-171.CrossRefGoogle Scholar
Baeten, J.C.M., & Verhoef, C. (1993). A Congruence Theorem for Structured Operational Semantics with Predicates. Pages 477-492 of: Best, E. (ed), Concurrency Theory, 4th International Conference, CONCUR 1993, Proceedings. Lecture Notes in Computer Science, no. 715. Springer, Berlin, Germany.Google Scholar
Baeten, J.C.M., & Verhoef, C. (1995). Concrete Process Algebra. Pages 149-269 of: Abramsky, S., Gabbay, D.M., & Maibaum, T.S.E. (eds), Handbook of Logic in Computer Science, vol. 4. Oxford University Press, Oxford, UK.Google Scholar
Baeten, J.C.M., & Weijland, W.P. (1990). Process Algebra. Cambridge Tracts in Theoretical Computer Science, no. 18. Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
Bakker, J.W. de, & Zucker, J.I. (1982a). Denotational Semantics of Concurrency. Pages 153-158 of: Theory of Computing, 14th Annual ACM Symposium, Proceedings. ACM, New York, NY, USA.
Bakker, J.W. de, & Zucker, J.I. (1982b). Processes and the Denotational Semantics of Concurrency. Information and Control, 54(1/2), 70-120.CrossRefGoogle Scholar
Bartlett, K.A., Scantlebury, R.A., & Wilkinson, P.T. (1969). A Note on Reliable Full-Duplex Transmission over Half-Duplex Lines. Communications ofthe ACM, 12(5), 260-261.CrossRefGoogle Scholar
Basten, T. (1996). Branching Bisimilarity is an Equivalence Indeed!Information Processing Letters, 58(3), 141-147.CrossRefGoogle Scholar
Basten, T. (1998). In Terms ofNets: System Design with Petri Nets and Process Algebra. Ph.D. thesis, Eindhoven University of Technology, Department of Mathematics and Computing Science, Eindhoven, the Netherlands.Google Scholar
Bekic, H. (1971). Towards a Mathematical Theory of Processes. Tech. rept. TR 25.125. IBM Laboratory Vienna, Vienna, Austria.Google Scholar
Bekic, H. (1984). Programming Languages and Their Definition, H., Beki (1936-1982), Selected Papers edited by C.B. Jones. Lecture Notes in Computer Science, no. 177. Springer, Berlin, Germany.Google Scholar
Bergstra, J.A., Bethke, I., & Ponse, A. (1994). Process Algebra with Iteration and Nesting. The Computer Journal, 37(4), 243-258.CrossRefGoogle Scholar
Bergstra, J.A., Fokkink, W.J., & Ponse, A. (2001). Process Algebra with Recursive Operations. Pages 333-389 of: Bergstra, J.A., Ponse, A., & Smolka, S.A. (eds), Handbook ofProcess Algebra.Elsevier Science, Amsterdam, the Netherlands.Google Scholar
Bergstra, J.A., & Klop, J.W. (1982). Fixed Point Semantics in Process Algebra. Tech. rept. IW 208. Mathematical Centre, Amsterdam, the Netherlands.Google Scholar
Bergstra, J.A., & Klop, J.W. (1984a). Process Algebra for Synchronous Communication. Information and Control, 60(1/3), 109-137.CrossRefGoogle Scholar
Bergstra, J.A., & Klop, J.W. (1984b). The Algebra of Recursively Defined Processes and the Algebra of Regular Processes. Pages 82-95 of: Paredaens, J. (ed), Automata, Languages and Programming, 11th Colloquium, ICALP 1984, Proceedings. Lecture Notes in Computer Science, no. 172. Springer, Berlin, Germany.Google Scholar
Bergstra, J.A., & Klop, J.W. (1985). Algebra of Communicating Processes with Abstraction. Theoretical Computer Science, 37(1), 77-121.CrossRefGoogle Scholar
Bergstra, J.A., & Klop, J.W. (1986a). Algebra of Communicating Processes. Pages 89-138 of: Bakker, J.W. de, Hazewinkel, M., & Lenstra, J.K. (eds), Mathematics and Computer Science I, CWI Symposium, Proceedings. CWI Monographs, no. 1. Elsevier Science, Amsterdam, the Netherlands.Google Scholar
Bergstra, J.A., & Klop, J.W. (1986b). Process Algebra: Specification and Verification in Bisimulation Semantics. Pages 61-94 of: Hazewinkel, M., Lenstra, J.K., & Meertens, L.G.L.T. (eds), Mathematics and Computer Science II, CWI Symposium, Proceedings. CWI Monographs, no. 4. Elsevier Science, Amsterdam, the Netherlands.Google Scholar
Bergstra, J.A., & Klop, J.W. (1986c). Verification of an Alternating Bit Protocol by Means of Process Algebra. Pages 9-23 of: Bibel, W., & Jantke, K.P. (eds), Mathematical Methods of Specification and Synthesis of Software Systems 1985, International Spring School, Proceedings. Lecture Notes in Computer Science, no. 215. Springer, Berlin, Germany.Google Scholar
Bergstra, J.A., & Klop, J.W. (1988). A Complete Inference System for Regular Processes with Silent Moves. Pages 21-81 of: Drake, F.R., & Truss, J.K. (eds), Logic Colloquium, Proceedings.Elsevier Science, Amsterdam, the Netherlands.Google Scholar
Bergstra, J.A., & Klop, J.W. (1992). A Convergence Theorem in Process Algebra. Pages 164-195 of: Bakker, J.W. de, & Rutten, J.J.M.M. (eds), Ten Years of Concurrency Semantics.World Scientific, Singapore.Google Scholar
Bergstra, J.A., Klop, J.W., & Olderog, E.-R. (1987). Failures without Chaos: A new Process Semantics for Fair Abstraction. Pages 77-103 of: Wirsing, M. (ed), Formal Description of Programming Concepts - III, IFIP Conference, Proceedings.Elsevier Science, Amsterdam, the Netherlands.Google Scholar
Bergstra, J.A., Klop, J.W., & Tucker, J.V. (1985). Process Algebra with Asynchronous Communication Mechanisms. Pages 76-95 of: Brookes, S.D., Roscoe, A.W., & Winskel, G. (eds), Seminar on Concurrency, Proceedings. Lecture Notes in Computer Science, no. 197. Springer, Berlin, Germany.Google Scholar
Bergstra, J.A., & Middelburg, C.A. (2005). Process Algebra for Hybrid Systems. Theoretical Computer Science, 335(2/3), 215-280.CrossRefGoogle Scholar
Bergstra, J.A., Ponse, A., & Zwaag, M.B. van der (2003). Branching Time and Orthogonal Bisimulation Equivalence. Theoretical Computer Science, 309(1-3), 313-355.CrossRefGoogle Scholar
Bergstra, J.A., & Tiuryn, J. (1987). Process Algebra Semantics for Queues. Fundamenta Informaticae, X, 213-224.Google Scholar
Bergstra, J.A., & Tucker, J.V. (1984). Top Down Design and the Algebra of Communicating Processes. Science of Computer Programming, 5(2), 171-199.Google Scholar
Bosscher, D.J.B. (1997). Grammars Modulo Bisimulation. Ph.D. thesis, University of Amsterdam, Amsterdam, the Netherlands.Google Scholar
Bradfield, J.C., & Stirling, C. (2001). Modal Logics and Mu-Calculi: An Introduction. Pages 293-330 of: Bergstra, J.A., Ponse, A., & Smolka, S.A. (eds), Handbook of Process Algebra.Elsevier Science, Amsterdam, the Netherlands.Google Scholar
Brookes, S.D. (1983). On the Relationship of CCS and CSP. Pages 83-96 of: Diaz, J. (ed), Automata, Languages and Programming, 10th Colloquium, ICALP 1983, Proceedings. Lecture Notes in Computer Science, no. 154. Springer, Berlin, Germany.Google Scholar
Brookes, S.D., Hoare, C.A.R., & Roscoe, A.W. (1984). A Theory of Communicating Sequential Processes. Journal of the ACM, 31(3), 560-599.CrossRefGoogle Scholar
Broy, M. (1987). Views on Queues. Science of Computer Programming, 11(1), 65-86.Google Scholar
Bundy, A. (1999). A Survey of Automated Deduction. Pages 153-174 of: Wooldridge, M.J., & Veloso, M. (eds), Artificial Intelligence Today: Recent Trends and Developments. Lecture Notes in Computer Science, vol. 1600. Springer, Berlin, Germany.Google Scholar
Burris, S., & Sankappanavar, H.P. (1981). A Course in Universal Algebra. Graduate Texts in Mathematics. Springer, Berlin, Germany.CrossRefGoogle Scholar
Christensen, S. (1993). Decidability and Decomposition in Process Algebras. Ph.D. thesis, University of Edinburgh, Department of Computer Science, Edinburgh, UK.Google Scholar
Clarke, E.M., Grumberg, O., & Peled, D.A. (2000). Model Checking.The MIT Press, Cambridge, MA, USA.Google Scholar
Cleaveland, R., Luttgen, G., & Natarajan, V. (2001). Priority in Process Algebra. Pages 711-765 of: Bergstra, J.A., Ponse, A., & Smolka, S.A. (eds), Handbook of Process Algebra.Elsevier Science, Amsterdam, the Netherlands.Google Scholar
Copi, I.M., Elgot, C.C., & Wright, J.B. (1958). Realization of Events by Logical Nets. Journal of the ACM, 5(2), 181-196.CrossRefGoogle Scholar
Corradini, F., D'Ortenzio, D., & Inverardi, P. (1999). On the Relationships among Four Timed Process Algebras. Fundamenta Informaticae, 38(4), 377-395.Google Scholar
D'Argenio, P.R. (1995). τ-Angelic Choice for Process Algebras (Revised Edition). Tech. rept., Universidad Nacional de La Plata, LIFIA, Depto. de Informática, Fac. de Cs. Exactas, La Plata, Buenos Aires, Argentina.Google Scholar
Denvir, B.T., Harwood, W.T., Jackson, M.I., & Ray, M.J. (eds). (1985). The Analysis of Concurrent Systems, Proceedings. Lecture Notes in Computer Science, no. 207. Springer, Berlin, Germany.CrossRef
Dershowitz, N., & Jouannaud, J.-P. (1990). Rewrite Systems. Pages 243-320 of: Leeuwen, J. van (ed), Handbook of Theoretical Computer Science, vol. B: Formal Models and Semantics. Elsevier Science, Amsterdam, the Netherlands.Google Scholar
Dijkstra, E.W. (1975). Guarded Commands, Nondeterminacy, and Formal Derivation of Programs. Communications of the ACM, 18(8), 453-457.CrossRefGoogle Scholar
Dijkstra, E.W. (1976). A Discipline ofProgramming.Prentice Hall, Englewood Cliffs, NJ, USA.Google Scholar
Floyd, R.W. (1967). Assigning Meanings to Programs. Pages 19-32 of: Schwartz, J.T. (ed), Symposium in Applied Mathematics, XIX, Proceedings. Mathematical Aspects of Computer Science. American Mathematical Society, Providence, RI, USA.Google Scholar
Fokkink, W.J. (1994). A Complete Equational Axiomatisation for Prefix Iteration. Information Processing Letters, 52(6), 333-337.CrossRefGoogle Scholar
Fokkink, W.J. (2000). Introduction to Process Algebra. Texts in Theoretical Computer Science. An EATCS Series. Springer, Berlin, Germany.CrossRefGoogle Scholar
Francez, N. (1986). Fairness.Springer, Berlin, Germany.CrossRefGoogle Scholar
Glabbeek, R.J. van. (1987). Bounded Nondeterminism and the Approximation Induction Principle in Process Algebra. Pages 336-247 of: Brandenburg, F.J., Vidal-Naquet, G., & Wirsing, M. (eds), Theoretical Aspects of Computer Science, 4th Annual Symposium, STACS 1987, Proceedings. Lecture Notes in Computer Science, no. 247. Springer, Berlin, Germany.Google Scholar
Glabbeek, R.J. van. (1990). Comparative Concurrency Semantics, with Refinement of Actions. Ph.D. thesis, Vrije Universiteit, Amsterdam, the Netherlands.Google Scholar
Glabbeek, R.J. van. (1993). The Linear Time - Branching Time Spectrum II: The Semantics of Sequential Systems with Silent Moves (Extended Abstract). Pages 66-81 of: Best, E. (ed), Concurrency Theory, 4th International Conference, CONCUR 1993, Proceedings. Lecture Notes in Computer Science, vol. 715. Springer, Berlin, Germany.Google Scholar
Glabbeek, R.J. van. (1994). What is Branching Time Semantics and Why to Use it?Bulletin of the EATCS, 53, 190-198.Google Scholar
Glabbeek, R.J. van. (1997). Notes on the Methodology of CCS and CSP. Theoretical Computer Science, 177(2), 329-350.Google Scholar
Glabbeek, R.J. van. (2001). The Linear Time - Branching Time Spectrum I: The Semantics of Concrete, Sequential Processes. Pages 3-100 of: Bergstra, J.A., Ponse, A., & Smolka, S.A. (eds), Handbook of Process Algebra.Elsevier Science, Amsterdam, the Netherlands.Google Scholar
Glabbeek, R.J. van, Luttik, S.P., & Trčka, N. (2008). Branching Bisimilarity with Explicit Divergence. Tech. rept. CS-R-08-25. Eindhoven University of Technology, Department of Mathematics and Computer Science, Eindhoven, the Netherlands.Google Scholar
Glabbeek, R.J. van, & Vaandrager, F.W. (1987). Petri Net Models for Algebraic Theories of Concurrency. Pages 224-242 of: Bakker, J.W. de, Nijman, A.J., & Treleaven, P.C. (eds), Parallel Architectures and Languages Europe, PARLE 1987, Proceedings, Volume II. Lecture Notes in Computer Science, no. 259. Springer, Berlin, Germany.Google Scholar
Glabbeek, R.J. van, & Vaandrager, F.W. (1989). Modular Specifications in Process Algebra — With Curious Queues. Pages 465-506 of: Wirsing, M., & Bergstra, J.A. (eds), Algebraic Methods: Theory, Tools and Applications. Lecture Notes in Computer Science, no. 394. Springer, Berlin, Germany.Google Scholar
Glabbeek, R.J. van, & Vaandrager, F.W. (1993). Modular Specification of Process Algebras. Theoretical Computer Science, 113(2), 293-348.Google Scholar
Glabbeek, R.J. van, & Weijland, W.P. (1989). Branching Time and Abstraction in Bisimulation Semantics (extended abstract). Pages 613-618 of: Ritter, G.X. (ed), Information Processing 89, 11th IFIP World Computer Congress, Proceedings.Elsevier Science Publishers B.V., North-Holland, Amsterdam, the Netherlands. Full version appeared as (Van Glabbeek & Weijland, 1996).Google Scholar
Glabbeek, R.J. van, & Weijland, W.P. (1996). Branching Time and Abstraction in Bisimulation Semantics. Journal of the ACM, 43(3), 555-600.Google Scholar
Gorrieri, R., & Laneve, C. (1995). Split and ST Bisimulation Semantics. Information and Computation, 118(2), 272-288.CrossRefGoogle Scholar
Groote, J.F., Matthijssen, A., Weerdenburg, M. van, & Usenko, Y.S. (2006). From /xCRL to mCRL2: Motivation and Outline. Electronic Notes in Theoretical Computer Science, 162, 191-196. Proceedings Essays on Algebraic Process Calculi, Workshop, APC 25.CrossRefGoogle Scholar
Groote, J.F., & Ponse, A. (1995). The Syntax and Semantics of μCRL. Pages 26-62 of: Ponse, A., Verhoef, C., & Vlijmen, S.F.M. van (eds), Algebra of Communicating Processes, ACP 1994, Proceedings. Workshops in Computing Series. Springer, Berlin, Germany.Google Scholar
Groote, J.F., & Reniers, M.A. (2001). Algebraic Process Verification. Pages 1151-1208 of: Bergstra, J.A., Ponse, A., & Smolka, S.A. (eds), Handbook of Process Algebra.Elsevier Science, Amsterdam, the Netherlands.Google Scholar
Halpern, J.Y., & Zuck, L.D. (1987). A Little Knowledge Goes a Long Way: Simple Knowledge-Based Derivations and Correctness Proofs for a Family of Protocols (Extended Abstract). Pages 269-280 of: Principles ofDistributed Computing, 6th Annual ACMSymposium, PODC 1987, Proc.ACM, New York, NY, USA.Google Scholar
Heijenoort, J. van. (1967). From Frege to Gödel: A Sourcebook in Mathematical Logic, 1879-1931.Harvard University Press, Cambridge, MA, USA.Google Scholar
Hennessy, M. (1981). A Term Model for Synchronous Processes. Information and Control, 51(1), 58-75.CrossRefGoogle Scholar
Hennessy, M. (1988a). Algebraic Theory ofProcesses.MIT Press, Cambridge, MA, USA.Google Scholar
Hennessy, M. (1988b). Axiomatising Finite Concurrent Processes. SIAM Journal on Computing, 17(5), 997-1017.CrossRefGoogle Scholar
Hennessy, M., & Milner, R. (1980). On Observing Nondeterminism and Concurrency. Pages 299-309 of: Bakker, J.W. de, & Leeuwen, J. van (eds), Automata, Languages and Programming, 7th Colloquium, ICALP 1980, Proceedings. Lecture Notes in Computer Science, no. 85. Springer, Berlin, Germany.Google Scholar
Hennessy, M., & Regan, T. (1995). A Process Algebra for Timed Systems. Information and Computation, 117(2), 221-239.CrossRefGoogle Scholar
Hoare, C.A.R. (1969). An Axiomatic Basis for Computer Programming. Communications of the ACM, 12(10), 576-580.CrossRefGoogle Scholar
Hoare, C.A.R. (1978). Communicating Sequential Processes. Communications of the ACM, 21(8), 666-677.CrossRefGoogle Scholar
Hoare, C.A.R. (1980). A Model for Communicating Sequential Processes. Pages 229-254 of: McKeag, R.M., & Macnaghten, A.M. (eds), On the Construction of Programs.Cambridge University Press, Cambridge, UK.Google Scholar
Hoare, C.A.R. (1985). Communicating Sequential Processes.Prentice Hall, Englewood Cliffs, NJ, USA.Google Scholar
Hussman, H. (1985). Unification in Conditional-Equational Theories. Pages 543-553 of: Caviness, B.F. (ed), European Conference on Computer Algebra, 10th International Conference, EUROCAL 1985, Proceedings Vol. 2: Research Contributions. Lecture Notes in Computer Science, no. 204. Springer, Berlin, Germany.Google Scholar
Jonsson, B., Yi, Wang, & Larsen, K.G. (2001). Probabilistic Extensions of Process Algebras. Pages 685-710 of: Bergstra, J.A., Ponse, A., & Smolka, S.A. (eds), Handbook of Process Algebra.Elsevier Science, Amsterdam, the Netherlands.Google Scholar
Jouannaud, J.-P., & Muñoz, M. (1984). Termination of a Set of Rules Modulo a Set of Equations. Pages 175-193 of: Shostak, R.E. (ed), Automated Deduction, 7th International Conference, Proceedings. Lecture Notes in Computer Science, no. 170. Springer, Berlin, Germany.Google Scholar
Khadim, U. (2008). Process Algebra for Hybrid Systems: Comparison and Development. Ph.D. thesis, Eindhoven University of Technology, Department of Mathematics and Computer Science, Eindhoven, the Netherlands.Google Scholar
Kleene, S.C. (1956). Representation of Events in Nerve Nets and Finite Automata. Pages 3-41 of: Shannon, C.E., & McCarthy, J. (eds), Automata Studies.Princeton University Press, Princeton, NJ, USA.Google Scholar
Klop, J.W. (1987). Term Rewriting Systems: A Tutorial. Bulletin of the EATCS, 32, 143-182.Google Scholar
Koomen, C.J. (1985). Algebraic Specification and Verification of Communication Protocols. Science ofComputer Programming, 5(1), 1-36.Google Scholar
Koymans, C.P.J., & Mulder, J.C. (1990). A Modular Approach to Protocol Verification Using Process Algebra. Pages 261-306 of: Baeten, J.C.M. (ed), Applications of Process Algebra.Cambridge University Press, Cambridge, UK.Google Scholar
Koymans, C.P.J., & Vrancken, J.L.M. (1985). Extending Process Algebra with the Empty Process 6. Logic Group Preprint Series 1. Utrecht University, Philosophy Department, Utrecht, the Netherlands.Google Scholar
Kranakis, E. (1987). Fixed Point Equations with Parameters in the Projective Model. Information and Computation, 75(3), 264-288.CrossRefGoogle Scholar
Lamport, L. (1987). A Fast Mutual Exclusion Algorithm. ACM Transactions on Computer Systems, 5(1), 1-11.CrossRefGoogle Scholar
Larsen, K.G., & Milner, R. (1987). Verifying a Protocol Using Relativized Bisimulation. Pages 126-135 of: Ottmann, Th. (ed), Automata, Languages and Programming, 14th International Colloquium, ICALP 1987, Proceedings. Lecture Notes in Computer Science, no. 267. Springer, Berlin, Germany.Google Scholar
Larsen, K.G., & Skou, A. (1991). Bisimulation through Probabilistic Testing. Information and Computation, 94(1), 1-28.CrossRefGoogle Scholar
Linz, P. (2001). An Introduction to Formal Languages and Automata.Jones and Bartlett, Sudbury, MA, USA.Google Scholar
Luttik, S.P. (2002). Choice Quantification in Process Algebra. Ph.D. thesis, University of Amsterdam, Department of Computer Science, Amsterdam, the Netherlands.Google Scholar
MacLane, S., & Birkhoff, G. (1967). Algebra.Macmillan, London, UK.Google Scholar
Markovski, J. (2008). Real and Stochastic Time in Process Algebras for Performance Evaluation. Ph.D. thesis, Eindhoven University of Technology, Department of Mathematics and Computer Science, Eindhoven, the Netherlands.Google Scholar
Mauw, S., & Mulder, J.C. (1994). Regularity of BPA-Systems is Decidable. Pages 34-47 of: Jonsson, B., & Parrow, J. (eds), Concurrency Theory, 5th International Conference, CONCUR 1994, Proceedings. Lecture Notes in Computer Science, no. 836. Springer, Berlin, Germany.Google Scholar
Mauw, S., & Veltink, G.J. (eds). (1993). Algebraic Specification of Communication Protocols. Cambridge Tracts in Theoretical Computer Science, no. 36. Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
McCarthy, J. (1963). A Basis for a Mathematical Theory of Computation. Pages 33-70 of: Braffort, P., & Hirshberg, D. (eds), Computer Programming and Formal Systems.North-Holland, Amsterdam, the Netherlands.Google Scholar
Milne, G.J. (1982). Abstraction and Nondeterminism in Concurrent Systems. Pages 358-364 of: Distributed Computing Systems, 3rd International Conference, ICDCS 1982, Proceedings.IEEE Computer Society Press, Los Alamitos, CA, USA.Google Scholar
Milne, G.J. (1983). CIRCAL: A Calculus for Circuit Description. Integration, the VLSI Journal, 1(2-3), 121-160.CrossRefGoogle Scholar
Milne, G.J., & Milner, R. (1979). Concurrent Processes and Their Syntax. Journal of the ACM, 26(2), 302-321.CrossRefGoogle Scholar
Milner, R. (1973). An Approach to the Semantics of Parallel Programs. Pages 285-301 of: Convegno di Informatica Teoretica, Proceedings.Instituto di Elaborazione della Informazione, Pisa, Italy.Google Scholar
Milner, R. (1975). Processes: A Mathematical Model of Computing Agents. Pages 157-174 of: Rose, H.E., & Shepherdson, J.C. (eds), Logic Colloquium, Proceedings.North-Holland, Amsterdam, the Netherlands.Google Scholar
Milner, R. (1978a). Algebras for Communicating Systems. In AFCET/SMF Joint Colloquium in Applied Mathematics, Proceedings. Paris, France. Also available as Tech. rept. CSR-25-78, University of Edinburgh, Computer Science Department, Edinburgh, UK, 1978.Google Scholar
Milner, R. (1978b). Synthesis of Communicating Behaviour. Pages 71-83 of: Winkowski, J. (ed), Mathematical Foundations ofComputer Science, 7th Symposium, MFCS 1978, Proceedings. Lecture Notes in Computer Science, no. 64. Springer, Berlin, Germany.Google Scholar
Milner, R. (1979). Flowgraphs and Flow Algebras. Journal of the ACM, 26(4), 794-818.CrossRefGoogle Scholar
Milner, R. (1980). A Calculus ofCommunicating Systems. Lecture Notes in Computer Science, no. 92. Springer, Berlin, Germany.CrossRefGoogle Scholar
Milner, R. (1983). Calculi for Synchrony and Asynchrony. Theoretical Computer Science, 25(3), 267-310.CrossRefGoogle Scholar
Milner, R. (1989). Communication and Concurrency.Prentice Hall, Englewood Cliffs, NJ, USA.Google Scholar
Milner, R. (1999). Communicating and Mobile Systems: the Pi-Calculus.Cambridge University Press, Cambridge, UK.Google Scholar
Moller, F. (1989). Axioms for Concurrency. Ph.D. thesis, University of Edinburgh, Computer Science Department, Edinburgh, UK.Google Scholar
Moller, F., & Tofts, C. (1990). A Temporal Calculus of Communicating Systems. Pages 401-415 of: Baeten, J.C.M., & Klop, J.W. (eds), Theories of Concurrency: Unification and Extension, CONCUR 1990, Proceedings. Lecture Notes in Computer Science, no. 458. Springer, Berlin, Germany.Google Scholar
Mousavi, M.R., & Reniers, M.A. (2005). Orthogonal Extensions in Structural Operational Semantics. Pages 1214-1225 of: Automata, Languages and Programming, 32nd International Colloquium, ICALP 2005, Proceedings. Lecture Notes in Computer Science, no. 3580. Springer, Berlin, Germany.Google Scholar
Mousavi, M.R., Reniers, M.A., & Groote, J.F. (2007). SOS Formats and Meta-Theory: 20 Years After. Theoretical Computer Science, 373(3), 238-272.CrossRefGoogle Scholar
Nicollin, X., & Sifakis, J. (1994). The Algebra of Timed Processes ATP: Theory and Application. Information and Computation, 114(1), 131-178.CrossRefGoogle Scholar
Oguztuzun, H.M. (1989). A Game Characterization of the Observational Equivalence of Processes. Pages 195-196 of: Algebraic Methodology and Software Technology, 1st Conference, AMAST1989, Proceedings.Iowa City, IA, USA.Google Scholar
Osborne, M., & Rubinstein, A. (1994). A Course in Game Theory. MIT Press, Cambridge, MA, USA.Google Scholar
Owicki, S., & Gries, D. (1976). Verifying Properties of Parallel Programs: An Axiomatic Approach. Communications of the ACM, 19(5), 279-285.CrossRefGoogle Scholar
Park, D.M.R. (1981). Concurrency and Automata on Infinite Sequences. Pages 167-183 of: Deussen, P. (ed), Theoretical Computer Science, 5th GIConference, Proc. Lecture Notes in Computer Science, no. 104. Springer, Berlin, Germany.Google Scholar
Parrow, J. (1985). Fairness Properties in Process Algebra — With Applications in Communication Protocol Verification. Ph.D. thesis, Uppsala University, Department of Computer Systems, Uppsala, Sweden.Google Scholar
Petri, C.A. (1962). Kommunikation mit Automaten. Ph.D. thesis, Institut fuer Instrumentelle Mathematik, Bonn, Germany. In German.Google Scholar
Plotkin, G.D. (1976). A Powerdomain Construction. SIAM Journal of Computing, 5(3), 452-487.CrossRefGoogle Scholar
Plotkin, G.D. (1981). A Structural Approach to Operational Semantics. Tech. rept. DAIMI FN-19. Aarhus University, Aarhus, Denmark.Google Scholar
Ponse, A. (1992). Process Algebras with Data. Ph.D. thesis, University of Amsterdam, Department of Computer Science, Amsterdam, the Netherlands.Google Scholar
Pratt, V.R. (1982). On the Composition of Processes. Pages 213-223 of: Principles of Programming Languages, 9th ACM SIGPLAN-SIGACT Symposium, POPL 1982, Proceedings.ACM, New York, NY, USA.Google Scholar
Quemada, J., de Frutos, D., & Azcorra, A. (1993). TIC: A Timed Calculus. Formal Aspects of Computing, 5(3), 224-252.CrossRefGoogle Scholar
Reed, G.M., & Roscoe, A.W. (1988). A Timed Model for Communicating Sequential Processes. Theoretical Computer Science, 58(1-3), 249-261.CrossRefGoogle Scholar
Sangiorgi, D., & Walker, D.J. (2001). The Pi-Calculus: A Theory of Mobile Processes.Cambridge University Press, Cambridge, UK.Google Scholar
Schneider, S.A. (2000). Concurrent and Real-Time Systems (the CSP Approach).John Wiley & Sons, Chichester, UK.Google Scholar
Scott, D.S., & Strachey, C. (1971). Towards a Mathematical Semantics for Computer Languages. Pages 19-46 of: Fox, J. (ed), Computers and Automata, Symposium, Proceedings.Polytechnic Institute of Brooklyn Press, New York, NY, USA.Google Scholar
Sewell, P. (1997). Nonaxiomatisability of Equivalences over Finite State Processes. Annals of Pure and Applied Logic, 90(1-3), 163-191.CrossRefGoogle Scholar
Smullyan, R. (1982). The Lady or the Tiger? And Other Logic Puzzles Including a Mathematical Novel that Features Gödel's Great Discovery.Alfred A. Knopf, Inc., New York, NY, USA.Google Scholar
Troeger, D.R. (1993). Step Bisimulation is Pomset Equivalence on a Parallel Language Without Explicit Internal Choice. Mathematical Structures in Computer Science, 3(1), 25-62.CrossRefGoogle Scholar
Usenko, Y.S. (2002). Linearization in muCRL. Ph.D. thesis, Eindhoven University of Technology, Department of Mathematics and Computer Science, Eindhoven, the Netherlands.Google Scholar
Vaandrager, F.W. (1986). Verification oofTwo Communication Protocols by Means of Process Algebra. Tech. rept. CS-R8608. CWI, Amsterdam, the Netherlands.Google Scholar
Vereijken, J.J. (1997). Discrete-Time Process Algebra. Ph.D. thesis, Eindhoven University of Technology, Department of Mathematics and Computer Science, Eindhoven, the Netherlands.Google Scholar
Verhoef, C. (1994). A General Conservative Extension Theorem in Process Algebra. Pages 149-168 of: Olderog, E.-R. (ed), Programming Concepts, Methods and Calculi, IFIP TC2/WG2.1/WG2.2/WG2.3 Working Conference, PROCOMET 1994, Proceedings. IFIP Transactions, vol. A-56. North-Holland, Amsterdam, the Netherlands.Google Scholar
Vrancken, J.L.M. (1997). The Algebra of Communicating Processes with Empty Process. Theoretical Computer Science, 177(2), 287-328.CrossRefGoogle Scholar
Walker, D.J. (1990). Bisimulation and Divergence. Information and Computation, 85(2), 202-241.CrossRefGoogle Scholar
Weijland, W.P. (1989). The Algebra of Synchronous Processes. Fundamenta Informaticae, XII, 139-162.Google Scholar
Winskel, G. (1982). Event Structure Semantics for CCS and Related Languages. Pages 561-576 of: Nielsen, M., & Schmidt, E.M. (eds), Automata, Languages and Programming, 9th Colloquium, ICALP 1982, Proceedings. Lecture Notes in Computer Science, no. 140. Springer, Berlin, Germany.Google Scholar
Yi, Wang (1991). CCS + Time = An Interleaving Model for Real Time Systems. Pages 217-228 of: Leane Albert, J., Monien, B., & Rodriguez Artalejo, M. (eds), Automata, Languages and Programming, 18th International Colloquium, ICALP 1991, Proceedings. Lecture Notes in Computer Science, no. 510. Springer, Berlin, Germany.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Bibliography
  • J. C. M. Baeten, Technische Universiteit Eindhoven, The Netherlands, T. Basten, Technische Universiteit Eindhoven, The Netherlands, M. A. Reniers, Technische Universiteit Eindhoven, The Netherlands
  • Book: Process Algebra: Equational Theories of Communicating Processes
  • Online publication: 05 July 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139195003.017
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Bibliography
  • J. C. M. Baeten, Technische Universiteit Eindhoven, The Netherlands, T. Basten, Technische Universiteit Eindhoven, The Netherlands, M. A. Reniers, Technische Universiteit Eindhoven, The Netherlands
  • Book: Process Algebra: Equational Theories of Communicating Processes
  • Online publication: 05 July 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139195003.017
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Bibliography
  • J. C. M. Baeten, Technische Universiteit Eindhoven, The Netherlands, T. Basten, Technische Universiteit Eindhoven, The Netherlands, M. A. Reniers, Technische Universiteit Eindhoven, The Netherlands
  • Book: Process Algebra: Equational Theories of Communicating Processes
  • Online publication: 05 July 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139195003.017
Available formats
×