Book contents
- Frontmatter
- Dedication
- Contents
- Foreword
- Preface
- 1 Quantum Many-Body Systems
- 2 Bose–Einstein Condensation
- 3 The Order Parameter and Gross–Pitaevskii Equation
- 4 Spin Dynamics of Atoms
- 5 Spinor Bose–Einstein Condensates
- 6 Diffraction of Atoms Using Standing Wave Light
- 7 Atom Interferometry
- 8 Atom Interferometry Beyond the Standard Quantum Limit
- 9 Quantum Simulation
- 10 Entanglement Between Atom Ensembles
- 11 Quantum Information Processing with Atomic Ensembles
- References
- Index
1 - Quantum Many-Body Systems
Published online by Cambridge University Press: 23 July 2021
- Frontmatter
- Dedication
- Contents
- Foreword
- Preface
- 1 Quantum Many-Body Systems
- 2 Bose–Einstein Condensation
- 3 The Order Parameter and Gross–Pitaevskii Equation
- 4 Spin Dynamics of Atoms
- 5 Spinor Bose–Einstein Condensates
- 6 Diffraction of Atoms Using Standing Wave Light
- 7 Atom Interferometry
- 8 Atom Interferometry Beyond the Standard Quantum Limit
- 9 Quantum Simulation
- 10 Entanglement Between Atom Ensembles
- 11 Quantum Information Processing with Atomic Ensembles
- References
- Index
Summary
This chapter introduces the basic theoretical tools for handling many-body quantum systems. Starting from second quantized operators, we discuss how it is possible to describe the composite wavefunction of multi-particle systems, and discuss representations in various bases. The algebra of Fock states is described for single and multi-mode systems, and how they relate to the eigenstates of the Schrodinger equation. Finally, we describe how interactions between particles can be introduced in a general way, and then describe the most common type of interaction in cold atom systems, the s-wave interaction
Keywords
- Type
- Chapter
- Information
- Quantum Atom OpticsTheory and Applications to Quantum Technology, pp. 1 - 9Publisher: Cambridge University PressPrint publication year: 2021