Book contents
- Frontmatter
- Contents
- Figures
- Tables
- Notation
- 1 Introduction
- 2 Quantum Mechanics
- 3 Superconductivity
- 4 Quantum Circuit Theory
- 5 Microwave Photons
- 6 Superconducting Qubits
- 7 Qubit–Photon Interaction
- 8 Quantum Computing
- 9 Adiabatic Quantum Computing
- Appendix A Hamiltonian Diagonalizations
- Appendix B Open Quantum Systems
- References
- Index
6 - Superconducting Qubits
Published online by Cambridge University Press: 04 August 2022
- Frontmatter
- Contents
- Figures
- Tables
- Notation
- 1 Introduction
- 2 Quantum Mechanics
- 3 Superconductivity
- 4 Quantum Circuit Theory
- 5 Microwave Photons
- 6 Superconducting Qubits
- 7 Qubit–Photon Interaction
- 8 Quantum Computing
- 9 Adiabatic Quantum Computing
- Appendix A Hamiltonian Diagonalizations
- Appendix B Open Quantum Systems
- References
- Index
Summary
We introduce the notion of qubit as unit of quantum information, illustrating how this notion can be implemented in nonlinear superconducting circuits via the charge and current degrees of freedom. Within these two types of qubits, we discuss the charge qubit, the transmon, and the flux qubit, illustrating the nature of the states that implement the qubit subspace and how they can be controlled and measured. We discuss how qubits can interact with each other directly or through mediators, illustrating different limits of interaction, introducing the notion of dipolar electric and magnetic moments, and demonstrating the tunability of interactions by different means. The chapter closes with a brief study of qubit coherence along the history of this field, with an outlook to potential near-term improvements.
Keywords
- Type
- Chapter
- Information
- Publisher: Cambridge University PressPrint publication year: 2022