Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T11:28:18.031Z Has data issue: false hasContentIssue false

1 - Probability Theoretic Preliminaries

Published online by Cambridge University Press:  29 March 2011

Béla Bollobás
Affiliation:
Trinity College, Cambridge and University of Memphis
Get access

Summary

The aim of this chapter is to present the definitions, formulae and results of probability theory we shall need in the main body of the book. Although we assume that the reader has had only a rather limited experience with probability theory and, if somewhat vaguely, we do define almost everything, this chapter is not intended to be a systematic introduction to probability theory. The main purpose is to identify the facts we shall rely on, so only the most important—and perhaps not too easily accessible—results will be proved. Since the book is primarily for mathematicians interested in graph theory, combinatorics and computing, some of the results will not be presented in full generality. It is inevitable that for the reader who is familiar with probability theory this introduction contains too many basic definitions and familiar facts, while the reader who has not studied probability before will find the chapter rather difficult.

There are many excellent introductions to probability theory: Feller (1966), Breiman (1968), K. L. Chung (1974) and H. Bauer (1981), to name only four. The interested reader is urged to consult one of these texts for a thorough introduction to the subject.

Notation and Basic Facts

A probability space is a triple (Ω, ∑, P), where Ω is a set, ∑ is a σ-field of subsets of Ω, P is a non-negative measure on ∑ and P(Ω) = 1.

Type
Chapter
Information
Random Graphs , pp. 1 - 33
Publisher: Cambridge University Press
Print publication year: 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×