Published online by Cambridge University Press: 25 June 2025
This volume represents the most recent trends in the random matrix theory with a special emphasis on the exchange of ideas between physical and mathematical communities. The main topics include:
• random matrix theory and combinatorics
• scaling limits; universalities and phase transitions in matrix models
• topologico-combinatorial aspects of the theory of random matrix models
• scaling limit of correlations between zeros on complex and symplectic manifolds Most contributions are based on talks and series of lectures given by the authors during the MSRI semester “Random Matrix Models and Their Applications” in Spring 1999, and have an expository or pedagogical style.
One of the basic ideas of the MSRI semester was to bring together the leading experts, both physicists and mathematicians, to discuss the latest results in the theory of matrix models and its applications. The book follows this line: it is divided roughly in half between physics and mathematics. The papers by physicists (G. Cicuta; Ph. Di Francesco; V. Kazakov; G. Mahoux, M. Mehta, J.-M. Normand; P. Zinn-Justin) give an overview of different physical problems in which the random matrix theory plays a decisive role, along with a rich variety of methods and ideas used to solve the problems. This includes enumeration of Feynman graphs on Riemann surfaces in the context of two-dimensional quantum gravity, spin systems on random surfaces, “meander problem” and random foldings, enumeration of knots and links, phase transitions and critical phenomena in random matrix models, interacting matrix models, etc.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.