Published online by Cambridge University Press: 10 November 2010
… le mathématicien qui étudie ces problèmes a l'impression de déchiffrer une inscription trilingue. Dans la première colonne se trouve la théorie riemannienne des fonctions algébriques au sens classique. La troisième colonne, c'est la théorie arithmétique des nombres algébriques. La colonne du milieu est celle dont la découverte est la plus récente; elle contient la théorie des fonctions algébriques sur un corps de Galois. Ces textes sont l'unique source de nos connaissances sur les langues dans lesquels ils sont écrits; de chaque colonne, nous n'avons bien entendu que des fragments; …. Nous savons qu'il y a des grandes différences de sens d'une colonne à l'autre, mais rien ne nous en avertit à l'avance.
A. Weil, “De la métaphysique aux mathématiques” (1960)The goal of this survey is to give some insight into how well-distributed sets of matrices in classical groups arise from families of L-functions in the context of the middle column of Weil's trilingual inscription, namely function fields of curves over finite fields. The exposition is informal and no proofs are given; rather, our aim is to illustrate what is true by considering key examples.
In the first section, we give the basic definitions and examples of function fields over finite fields and the connection with algebraic curves over function fields. The language is a throwback to Weil's Foundations, which is quite out of fashion but which gives good insight with a minimum of baggage.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.