Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-13T22:56:02.077Z Has data issue: false hasContentIssue false

1 - Examples of rational varieties

Published online by Cambridge University Press:  25 May 2010

János Kollár
Affiliation:
Princeton University, New Jersey
Karen E. Smith
Affiliation:
University of Michigan, Ann Arbor
Alessio Corti
Affiliation:
University of Cambridge
Get access

Summary

In this chapter, we introduce rational varieties through examples. After giving the fundamental definitions in the first section and settling the rationality question for curves in Section 2, we continue with the rich theory of quadric hypersurfaces in Section 3. This is essentially a special case of the theory of quadratic forms, though the questions tend to be strikingly different.

Quadrics over finite fields are discussed in Section 4. Several far–reaching methods of algebraic geometry appear here in their simplest form.

Cubic hypersurfaces are much more subtle. In Section 5, we discuss only the most basic rationality and unirationality facts for cubics. A further smattering of rational varieties is presented in Section 6, together with a more detailed look at determinantal representations for cubic surfaces.

A very general and useful nonrationality criterion, using differential forms, is discussed in Section 7.

Rational and unirational varieties

Roughly speaking, a variety is unirational if a dense open subset is parametrized by projective space, and rational if such a parametrization is one–to–one.

To be precise, fix a ground field k, and let X be a variety defined over k. It is important to bear in mind that k need not be algebraically closed and that all constructions involving the variety X are carried out over the ground field k.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×